Compositions and methods for the treatment of wounds, disorders, and diseases of the skin

a technology for disorders, wounds, and skin, applied in the direction of drug compositions, enzymology, viruses, etc., can solve the problems of difficult to chew and swallow food, chronic malnutrition, and excessive scarring, and achieve the effects of increasing, increasing, and/or supplementing the formation of hydroxylysine residues, enhancing, increasing, and/or supplementing the formation of anchoring fibrils of subjects

Active Publication Date: 2017-10-12
KRYSTAL BIOTECH INC
View PDF0 Cites 11 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0018]Other aspects of the present disclosure relate to a method of providing prophylactic, palliative, or therapeutic relief of a wound, disorder, or disease of the skin in a subject, the method comprising administering to the subject a pharmaceutical composition comprising a vector, wherein the vector is a recombinant herpes simplex virus genome, and wherein the pharmaceutical composition is capable of enhancing, increasing, augmenting, and / or supplementing the levels of a Collagen alpha-1 (VII) chain polypeptide and / or a Lysyl hydroxylase 3 polypeptide and / or a Keratin type I cytoskeletal 17 polypeptide in one or more cells of the subject. In some embodiments, the pharmaceutical composition comprises a virus comprising the vector, wherein the vector comprises one or more transgenes encoding a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, a Keratin type I cytoskeletal 17 polypeptide, or a chimeric polypeptide thereof, and a pharmaceutically acceptable carrier. In some embodiments, the virus is an adenovirus, adeno-associated virus, retrovirus, lentivirus, sendai virus, herpes simplex virus, vaccinia virus, or any hybrid virus thereof. In some embodiments, the virus is replication-defective. In some embodiments, the virus is a herpes simplex virus (HSV). In some embodiments, the herpes simplex virus is a herpes simplex type 1 virus, a herpes simplex type 2 virus, or any derivatives thereof. In some embodiments, the recombinant herpes simplex virus genome is a recombinant HSV-1 genome, a recombinant HSV-2 genome, or any derivatives thereof. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in an immediate early herpes simplex virus gene. In some embodiments, the herpes simplex virus gene is ICP0, ICP4, ICP22, ICP27, ICP47, tk, UL41, or UL55. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4, ICP27, and UL55 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4, ICP22, ICP27, ICP47, and UL55 genes. In some embodiments, the inactivating mutation in the ICP4, ICP27, and UL55 genes is a deletion of the coding sequence of the ICP4, ICP27, and UL55 genes. In some embodiments, the inactivating mutation in the ICP22 and ICP47 genes is a deletion in the promoter region of the ICP22 and ICP47 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4 and ICP22 genes. In some embodiment, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0 and ICP4 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, and ICP22 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, ICP22, and ICP27 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, ICP22, ICP27, and UL55 genes. In some embodiments, the inactivating mutation is a deletion of the coding sequence of the genes. In some embodiments, the recombinant herpes simplex virus genome further comprises an inactivating mutation in the ICP47 gene, an inactivating mutation in the UL41 gene, or an inactivation mutation in the ICP47 and UL41 genes. In some embodiments, the recombinant herpes simplex virus genome comprises the one or more transgenes within one or more viral gene loci. In some embodiments, the recombinant herpes simplex virus genome comprises the one or more transgenes within one or more of the ICP4 viral gene loci. In some embodiments, the recombinant herpes simplex virus genome comprises the one or more transgenes within the UL41 viral gene locus. In some embodiments, the vector is capable of replicating within a target cell when delivered into said target cell. In some embodiments, the pharmaceutically acceptable carrier is suitable for topical or transdermal administration. In some embodiments, the pharmaceutically acceptable carrier is suitable for subcutaneous or intradermal administration. In some embodiments, the one or more transgenes comprises an miRNA binding site. In some embodiments, the vector comprises a transgene encoding a Collagen alpha-1 (VII) chain polypeptide. In some embodiments, the vector comprises a transgene encoding a Lysyl hydroxylase 3 polypeptide. In some embodiments, the vector comprises a transgene encoding a Keratin type I cytoskeletal 17 polypeptide. In some embodiments, the Collagen alpha-1 (VII) chain polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 2. In some embodiments, the collagen alpha-1 (VII) chain polypeptide is a fragment, wherein the fragment has at least 100 consecutive amino acids of SEQ ID NO: 2. In some embodiments, the Collagen alpha-1 (VII) chain polypeptide enhances, increases, augments, and / or supplements anchoring fibril formation of a subject when the polypeptide is expressed in one or more target cells of the subject. In some embodiments, the Collagen alpha-1 (VII) chain polypeptide enhances, increases, augments, and / or supplements epithelial basement membrane organization and / or epithelial basement adherence of a subject when the polypeptide is expressed in one or more target cells of the subject. In some embodiments, the Lysyl hydroxylase 3 polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 4. In some embodiments, the Lysyl hydroxylase 3 polypeptide is a fragment, wherein the fragment has at least 100 consecutive amino acids of SEQ ID NO: 4. In some embodiments, the Lysyl hydroxylase 3 polypeptide enhances, increases, augments, and / or supplements the formation of hydroxylysine residues on one or more collagen polypeptides of a subject when the Lysyl hydroxylase 3 polypeptide is expressed in one or more target cells of the subject. In some embodiments, the Lysyl hydroxylase 3 polypeptide enhances, increases, augments, and / or supplements anchoring fibril formation, epithelial basement membrane organization, and / or epithelial basement adherence of a subject when the polypeptide is expressed in one or more target cells of the subject. In some embodiments, the Keratin type I cytoskeletal 17 polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 30. In some embodiments, the Keratin type I cytoskeletal 17 polypeptide is a fragment, wherein the fragment has at least 100 consecutive amino acids of SEQ ID NO: 30. In some embodiments, the Keratin type I cytoskeletal 17 polypeptide enhances, increases, augments, and / or supplements wound healing in a subject. In some embodiments, the vector comprises at least a first transgene and a second transgene. In some embodiments, the first transgene and the second transgene each encode a Collagen alpha-1 (VII) chain polypeptide. In some embodiments, the first transgene encodes a Collagen alpha-1 (VII) chain polypeptide and the second transgene encodes a Lysyl hydroxylase 3 polypeptide. In some embodiments, the first transgene encodes a Collagen alpha-1 (VII) chain polypeptide and the second transgene encodes a Keratin type I cytoskeletal 17 polypeptide. In some embodiments, the first transgene encodes a Lysyl hydroxylase 3 polypeptide and the second transgene encodes a Keratin type I cytoskeletal 17 polypeptide. In some embodiments, the vector comprises at least a first transgene, a second transgene, and a third transgene. In some embodiments, the first transgene encodes a Collagen alpha-1 (VII) chain polypeptide, the second transgene encodes a Lysyl hydroxylase 3 polypeptide, and the third transgene encodes a Keratin type I cytoskeletal 17 polypeptide. In some embodiments, the pharmaceutical composition is administered topically or transdermally to the subject. In some embodiments, the pharmaceutical composition is administered subcutaneously or intradermally to the subject. In some embodiments, the pharmaceutical composition is administered one, two three, four, five or more times per day. In some embodiments, the pharmaceutical composition is administered to one or more affected and / or unaffected areas of the subject. In some embodiments, the disease or disorder of the skin is one or more of epidermolysis bullosa, skin cancer, psoriasis, lichen planus, lupus, rosacea, eczema, cutaneous candidiasis, cellulitis, impetigo, decubitus ulcers, erysipelas, ichthyosis vulgaris, dermatomyositis, acrodermatitis, stasis dermatitis, nethertons syndrome, epidermolysis bullosa simplex (LAMB3 gene), autosomal recessive congenital ichthyosis, xeroderma pigmentosa, and pemphigoid.

Problems solved by technology

Blisters are routinely present over the whole body, including on mucous membranes (such as the lining of the mouth and digestive tract), and healing of these blisters results in extensive scarring.
Damage to the mouth and esophagus can make it difficult to chew and swallow food, leading to chronic malnutrition and slow growth.
Complications from extensive scarring can include fusion of the fingers and toes, joint deformities, and eye inflammation leading to vision loss.
Additionally, patients suffering from RDEB have a high risk of developing squamous cell carcinoma, which can be unusually aggressive in this patient population, often becoming life-threatening.
Mutations in the Col7a1 gene, and diminished levels of PLODS expression, impair the ability of Collagen alpha-1 (VII) chain protein to properly connect the epidermis to the dermis in dystrophic epidermolysis bullosa patients, leading to fragile skin.
Treatment options for epidermolysis bullosa patients are limited, and current care focuses on managing the symptoms of the disease, including providing medication to control pain and itching, administering oral antibiotics to stave off infections resulting from open wounds on the skin and mucosa, and surgical strategies to address scarring and deformities.
Because many DEB patients have multiple wounds spanning large areas of trauma-prone sites (such as the sacrum, hips, feet, lower back, and hands), any treatment involving intradermal injection would be extremely invasive, as these large wound areas would all need to be injected, likely repeatedly, although injection time intervals are unclear.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Compositions and methods for the treatment of wounds, disorders, and diseases of the skin
  • Compositions and methods for the treatment of wounds, disorders, and diseases of the skin
  • Compositions and methods for the treatment of wounds, disorders, and diseases of the skin

Examples

Experimental program
Comparison scheme
Effect test

embodiment 1

[0158]A pharmaceutical composition comprising:

[0159]a) a virus comprising a vector, wherein the vector comprises one or more transgenes encoding a polypeptide selected from the group consisting of a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, and a chimeric polypeptide thereof; and

[0160]b) a pharmaceutically acceptable carrier.

embodiment 2

[0161]The pharmaceutical composition of embodiment 1, wherein the virus is an adenovirus, adeno-associated virus, retrovirus, lentivirus, sendai virus, herpes simplex virus, vaccinia virus, or any hybrid virus thereof.

embodiment 3

[0162]The pharmaceutical composition of embodiment 1, wherein the virus is a herpes simplex virus (HSV).

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
volumeaaaaaaaaaa
volumeaaaaaaaaaa
diameteraaaaaaaaaa
Login to view more

Abstract

The present disclosure relates, in part, to pharmaceutical compositions comprising one or more polynucleotides suitable for enhancing, increasing, augmenting, and / or supplementing the levels of Collagen alpha-1 (VII) chain polypeptide and / or Lysyl hydroxylase 3 polypeptide and / or Keratin type I cytoskeletal 17 polypeptide in a subject. The present disclosure also relates, in part, to pharmaceutical compositions and methods of use for providing prophylactic, palliative, or therapeutic relief of a wound, disorder, or disease of the skin in a subject, including a subject having, or at risk of developing, one or more symptoms of epidermolysis bullosa.

Description

CROSS REFERENCE TO RELATED APPLICATIONS[0001]This application claims the priority benefit of U.S. Provisional Application Ser. No. 62 / 320,316, filed Apr. 8, 2016, which is incorporated herein by reference in its entirety.SUBMISSION OF SEQUENCE LISTING ON ASCII TEXT FILE[0002]The content of the following submission on ASCII text file is incorporated herein by reference in its entirety: a computer readable form (CRF) of the Sequence Listing (file name: 761342000100SEQLIST.txt, date recorded: Dec. 28, 2016, size: 394 KB).FIELD OF THE INVENTION[0003]The present disclosure relates, in part, to pharmaceutical compositions and methods of use for providing prophylactic, palliative, or therapeutic relief of a wound, disorder, or disease of the skin in a subject, including a subject having, or at risk of developing, one or more symptoms of epidermolysis bullosa.BACKGROUND[0004]A number of serious disease-related skin conditions are associated with one or more genetic disorders in patients suf...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): A61K35/763A61K9/00
CPCA61K9/0014A61K35/763A61K38/1748A61K38/39A61K9/06A61K47/38A61K48/005C07K14/78C12N9/0071C12Y114/11004C12N2710/16643A61P17/00A61P17/02A61P17/04A61P17/16A61P35/00A61K38/443A61K39/12A61K2039/53C12N15/86C12N7/00C12N2710/16034
Inventor KRISHNAN, SUMAAGARWAL, POOJA
Owner KRYSTAL BIOTECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products