Structured material having apertures and method of producing the same

a structured material and aperture technology, applied in the direction of synthetic resin layered products, bandages, transportation and packaging, etc., can solve the problems of poor skin health, leakage of conventional cover materials used in personal care absorbent articles, and inability to provide high viscosity fluids, etc., to achieve fast and efficient menses handling, high viscosity, and high viscosity

Inactive Publication Date: 2006-10-10
KIMBERLY-CLARK WORLDWIDE INC
View PDF55 Cites 33 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0008]Materials suitable as a cover material or intake liner for feminine care products must quickly and efficiently handle menses. Menses has an average viscosity of approximately 10 cP. This is a slightly higher viscosity than the viscosity of water, which is about 1.0 cP. The suitable cover material should have a fast intake rate for high viscosity fluids, prevent menses from flowing back to the surface (reduce rewet), and allow only minimal staining. An ideal cover material may have the performance of a film (clean and dry) with the clothlike feel of spunbond.
[0009]Materials suitable for use as a cover material or intake liner for infant care, including diapers and training pants, must quickly and efficiently handle runny bowel movements without compromising the management of other fluids such as urine. A runny bowel movement has an average viscosity of about 25 Poise and a range of about 0.1 Poise to about 110 Poise. Approximately 87% of a runny bowel movement is water and the remaining 13% is composed of particles. The particles range in size from about 5.0 microns to about 900 microns with an average size of about 100 microns. Desirably, the cover material has a pore radius of greater than about 200 microns, more desirably greater than about 600 microns, to pass bowel movement particles through the cover material. It is also desirable to enhance pore size and pore volume to increase web permeability, thereby increasing the fluid intake rate. The cover material should also have a single point acquisition (direct intake and localization of runny bowel movements), high z-directional flow, rapid dewatering, and surface flow resistance.
[0010]The high viscosity fluid needs for professional health care, including bandages and the like, are slightly different than those for feminine care and infant care. The main priority for the development of fenestration products is to produce cost-effective alternatives for the current foam pads. The fenestration products should have a cover material with a high coefficient of friction to prevent the surgical tools from slipping on the fenestration reinforcement, and an ability to absorb wound exudates and other surgical fluids.
[0011]Accordingly, it is one object of this invention to provide a process for making an apertured structured material for use as a cover material in a personal care absorbent article for managing high viscosity fluids, for example menses, runny bowel movements, wound exudates and blood, without compromising the management of other fluids, for example urine.
[0012]It is another object of this invention to provide a process for making an apertured structured material for a personal care absorbent article which is soft and comfortable, absorbent, clean and dry.
[0013]It is another object of this invention to provide a process for producing an apertured structured material which has fluid intake and rewet properties similar to or better than more expensive model materials.

Problems solved by technology

Conventional cover materials used in personal care absorbent articles do not provide for high viscosity fluids, for example menses, runny bowel movements, wound exudate and blood.
As a result, the conventional cover materials used in personal care absorbent articles leak and contribute to poor skin health.
However, these conventional liners do not provide for particle intake.
As a result, the particles contained within the high viscosity fluids separate during absorption of the water and tend to remain on the surface of the liner to produce undesired interactions with the wearer's skin.
However, these materials are costly to manufacture.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Structured material having apertures and method of producing the same
  • Structured material having apertures and method of producing the same
  • Structured material having apertures and method of producing the same

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0111]Several structured composite materials 10 were produced in accordance with the process of this invention and evaluated to compare the properties of each material with those of conventional model cover materials. A 100 gsm CaCO3 filled linear low density polyethylene (LLDPE) film, made using 45% by weight of m-LLDPE and 55% by weight CaCO3, is oriented in the machine direction using a machine direction orientor to three times its original length and then bonded to a nonwoven surge material. The bond pattern used was a S-weave bond pattern. The film layer of the composite material has a low shrinking temperature and is apertured during the bonding process by burning off the polymers in the bond areas. As the apertured composite material is heated, the film layer shrinks, thus producing the structure 40 of the apertured structured composite material 10.

[0112]During the bonding process, the film layer was positioned against the pattern roll and the nonwoven surge material was posi...

example 2

[0119]Several samples of structured composite materials 10 were produced according to this invention having a first layer 20 made of a polypropylene polymer and a slit apertured second layer 30 made of an ethylene-propylene copolymer 30. Sample 1 was made with a non-shrinking first layer 20 and a slit apertured second layer 30 having slits 44 with a machine direction orientation. Sample 2 was made with a non-shrinking first layer 20 and a slit apertured second layer 30 having slits 44 with a diagonal orientation. Sample 3 was a composite cover material having a first layer 20 of polypropylene polymer and a second layer 30 of ethylene-polypropylene copolymer. The polypropylene polymer was made by the Exxon Mobil Chemical Company under the trade designation Exxon 3155 and the copolymer was made by Union Carbide under the trade designation 6D43. Each sample was treated with 0.3% Ahcovel surfactant add-on and tested for menses and rewet performance. The control code for the test was a s...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
diameteraaaaaaaaaa
viscosityaaaaaaaaaa
viscosityaaaaaaaaaa
Login to view more

Abstract

A method for producing an apertured structured material for accommodating passage of fluids, particularly high viscosity fluids, through the apertured structured material. In one embodiment, the apertured structured material is a composite material formed by differential shrinkage of a shrinkable second layer, for example an ethylene-propylene copolymer, which is laminated to a first layer, for example a polypropylene polymer. During the differential shrinkage process, a plurality of slits which are formed in the second layer open to form uniformly-shaped apertures. In another embodiment, an apertured structured heterogenous material is made of a heterogeneous mixture of at least two homogeneous fiber sets or components having different shrinkage extents.

Description

BACKGROUND OF THE INVENTION[0001]1. Field of the Invention[0002]This invention relates to a method for producing an apertured structured material, for example a cover material or topsheet for personal care absorbent articles including diapers, feminine pads, incontinence garments, training pants, wound care products, and the like. The apertured structured material according to this invention provides a structure for accommodating passage of fluids, particularly high viscosity fluids such as menses, runny bowel movements, wound exudate and blood, therethrough.[0003]2. Description of Related Art[0004]Personal care absorbent articles such as sanitary napkins, disposable diapers, incontinent-care pads and the like are widely used, and much effort has been made to improve the effectiveness and functionalities of these articles. Conventional cover materials used in personal care absorbent articles do not provide for high viscosity fluids, for example menses, runny bowel movements, wound e...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Patents(United States)
IPC IPC(8): B32B37/00A61F13/15B32B3/24B32B7/028B32B37/14B32B38/04
CPCA61F13/512A61F13/53708B32B3/266B32B37/144B32B38/04B32B7/02A61F2013/4958A61F2013/53786Y10T156/1057B32B2038/047B32B2307/736A61F13/51121A61F13/5123A61F13/15577Y10T428/24994B32B7/028
Inventor DELUCIA, MARY LUCILLECHI-CHING TAN, SANDYVARONA, EUGENIO GOKING, JESSICA B.
Owner KIMBERLY-CLARK WORLDWIDE INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products