Multi-bit electromechanical memory devices and methods of manufacturing the same

a multi-bit electromechanical and memory device technology, applied in semiconductor devices, digital storage, instruments, etc., can solve the problems of poor data retention reliability, relatively short life span, low operating speed of flash memory, etc., and achieve high-speed operation, enhanced data retention, and high-density storage

Active Publication Date: 2009-08-11
SAMSUNG ELECTRONICS CO LTD
View PDF5 Cites 17 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0005]Embodiments of the present invention are directed to multiple-bit electromechanical memory devices and methods of manufacture thereof that address and alleviate the above-identified limitations of conventional devices. In particular, embodiments of the present invention provide multiple-bit electromechanical memory devices that realize, among other features, high-density storage, low-voltage program and erase voltages, high-speed operation, enhanced data retention, and high long-term endurance, and methods of formation of such devices. The embodiments of the present invention are applicable to both non-volatile and volatile memory device formats.

Problems solved by technology

One type of non-volatile device, referred to as flash memory, has become popular because it is relatively inexpensive to produce, and because it operates at relatively low power demands; however, flash memory is known to generally suffer from low operating speed, relatively poor data retention reliability and relatively short life span.
In addition, such devices are based on the operation of conventional transistors, and with the pressures of further integration, they increasingly suffer from the short-channel effect, lowering of breakdown voltage, and lowering of reliability of the gate junction with repeated program / erase cycles.
In addition, as the size of the transistor decreases, there is an increased likelihood of intercell interference, which can have a further adverse effect on performance and reliability.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Multi-bit electromechanical memory devices and methods of manufacturing the same
  • Multi-bit electromechanical memory devices and methods of manufacturing the same
  • Multi-bit electromechanical memory devices and methods of manufacturing the same

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0120]Embodiments of the present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Like numbers refer to like elements throughout the specification.

[0121]It will be understood that, although the terms first, second, etc. are used herein to describe various elements, these elements should not be limited by these terms. These terms are used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present invention. As used herein, the term “and / or” includes any and all combinations of one or more of the associated listed items.

[0122]It will be understood that when an element is referred to as b...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

In a memory device and a method of forming the same, in one embodiment, the memory device comprises a substrate and a bit line on the substrate extending in a first direction. A first word line structure is provided on the bit line and spaced apart from, and insulated from, the bit line, the first word line structure extending in a second direction transverse to the first direction. An electrode is coupled to the bit line extending over the first word line structure and spaced apart from the first word line structure by a first gap. A second word line structure is over the electrode and spaced apart from the electrode by a second gap, the second word line structure extending in the second direction. The electrode is cantilevered between the first word line structure and the second word line structure such that the electrode deflects to be electrically coupled with a top portion of the first word line structure through the first gap in a first bent position and deflects to be electrically coupled with a bottom portion of the second word line structure through the second gap in a second bent position, and is isolated from the first word line structure and the second word line structure in a rest position.

Description

RELATED APPLICATIONS[0001]This application claims priority under 35 U.S.C. 119 to Korean Patent Application No. 10-2006-0080203 filed on Aug. 24, 2006, the content of which is incorporated herein by reference in its entirety.[0002]This application is related to U.S. patent application Ser. No. 11 / 713,476, filed Mar. 2, 2007, entitled “Electromechanical Memory Devices and Methods of Manufacturing the Same,” by Yun, et al., filed of even date herewith, incorporated herein by reference, and commonly owned with the present application.BACKGROUND OF THE INVENTION[0003]Semiconductor memory devices include memory cells for the storage of electronic information. Non-volatile memory devices enjoy widespread use because their associated memory cells can retain information even when the source power supply is disabled or removed. This feature makes non-volatile memory devices especially attractive for use in portable electronics. With the continuous trend toward higher integration, high-densit...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Patents(United States)
IPC IPC(8): G11C11/34
CPCG11C11/50G11C16/0475G11C23/00G11C11/56H01L2924/0002H01L2924/00
Inventor YUN, EUNJUNGLEE, SUNG-YOUNGKIM, DONG-WONPARK, DONGGUN
Owner SAMSUNG ELECTRONICS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products