Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

42results about How to "High density storage" patented technology

Titanium-antimony-tellurium phase-changing material depositing method and preparation method of phase-changing storage unit

The invention provides a titanium-antimony-tellurium phase-changing material depositing method and a preparation method of a phase-changing storage unit. The titanium-antimony-tellurium phase-changing material depositing method includes: depositing a Ti precursor which comprises one or more than one of (R1)4Ti, (R1R2N)4Ti, (R1O)4Ti, ((R1)3Si)4Ti and TiM4, wherein R1 and R2 are linear chains, branched chains or annular alkyls containing 1-10 carbons, and M is Cl, F or Br; depositing a Te precursor which comprises one or more than one of (R1)2Te, (R1R2N)2Te and ((R1)3Si)2Te, wherein R is selected from a linear chain, a branched chain or an annular alkyl or alkenyl containing 1-10 carbons; and depositing Sb precursors which comprise one or more than one of (R1)3Sb, (R1R2N)3Sb, (R1O)3Sb, ((R1)3Si)3Sb and SbM3, wherein R1 and R2 are linear chains, branched chains or annular alkyls containing 1-10 carbons, and M is Cl, F or Br. The TiSbTe phase-changing materials prepared by the titanium-antimony-tellurium phase-changing material depositing method have the advantages of being accurate and controllable in thickness, good in thin film compactness and strong in pore filling capability. Phase-changing thin films prepared by the titanium-antimony-tellurium phase-changing material depositing method can be applied to a storer, so that high-density storing can be achieved, and simultaneously low-energy-consumption devices can be obtained.
Owner:SHANGHAI INST OF MICROSYSTEM & INFORMATION TECH CHINESE ACAD OF SCI

Method for preparing titanium-stibium-tellurium (Ti-Sb-Te) phase change material and method for preparing phase change storage unit

The invention provides a method for preparing a titanium-stibium-tellurium (Ti-Sb-Te) phase change material and a method for preparing a phase change storage unit. The method for preparing the Ti-Sb-Te phase change material comprises the following steps: 1) introducing a precursor SbCl3 pulse of Sb to a substrate, washing away unabsorbed SbCl3, then introducing a precursor (R3Si)2Te pulse of Te and washing away the unabsorbed (R3Si)2Te and by-products of reaction; 2) introducing a TiCl4 pulse of Ti to the substrate, washing away the residual TiCl4, then introducing the precursor (R3Si)2Te pulse of Te and washing away the residual (R3Si)2Te and by-products of reaction; and 3) introducing a precursor SbCl3 pulse of Sb to the substrate, washing away the residual SbCl3, then introducing a (R3Si)3Sb of Sb and washing away the unabsorbed (R3Si)3Sb and by-products of reaction. The Ti-Sb-Te phase change material prepared by using the method has the characteristics of accurately controllable thickness, good film compactness and strong pore-filling capability. A phase change film prepared by using the method can realize high-density storage when applied to a memorizer, and meanwhile a low power-cost device can be obtained.
Owner:SHANGHAI INST OF MICROSYSTEM & INFORMATION TECH CHINESE ACAD OF SCI

Memory array structure and operating method thereof

ActiveCN103093814AImprove storage densitySimplify system structure and manufacturing processSolid-state devicesRead-only memoriesStorage cellStorage tube
The invention provides a memory array structure and an operating method thereof. The memory array structure comprises a plurality of serial structures which are arranged in parallel along a first direction and a second direction, a plurality of word lines which are arranged in parallel along the second direction, a first selection line along the second direction, a second selection line along the section direction, and a plurality of parallel bit lines along the first direction, wherein each serial structure comprises a first selection transistor, a plurality of memory units and a second selection transistor which are sequentially connected with one another in series in the first direction, and the storage units are logically equivalent to a mode that one selection tube is serially connected with one or more storage tubes; each word line is connected with a grid of each storage unit; the first selection line is connected with a grid of each first selection transistor; the second selection line is connected with a grid of each second selection transistor; and the drain ends of the first selection transistors of the serial structures are connected with one bit line adjacent to the serial structures, and the source ends of the second selection transistors of the serial structures are connected with another bit line adjacent to the serial structures. According to the memory array structure, the storage density of a memory array can be effectively enhanced.
Owner:XIAMEN IND TECH RES INST CO LTD

Design method of super-surface color nanometer printing device capable of reconstructing watermarks

The invention provides a design method of a super-surface color nano printing device for realizing reconfigurable watermarks. The design method comprises the following steps: constructing a super-surface array; optimizing and simulating to obtain reflection spectrums of the nano-brick structural units with multiple groups of size parameters, and calculating to obtain structural colors of the nano-brick structural units; designing a target color image, and selecting several groups of size parameters with structure colors meeting requirements as alternative size parameters according to color distribution of the target color image; finding size parameters corresponding to the nano-brick structure units corresponding to the pixel points from the alternative size parameters according to the colors of the pixel points of the target color image; and designing a watermark image to be superposed, setting the nano-brick steering angle of the nano-brick structure unit corresponding to the pixel points without watermark superposition as alpha on the basis of the steps, and setting the nano-brick steering angle of the nano-brick structure unit corresponding to the pixel points with watermark superposition as alpha + / -90 degrees. The machining error tolerance is high, the design and machining difficulty is reduced, and the good development prospect is achieved.
Owner:WUHAN UNIV

Tungsten-antimony-tellurium (W-Sb-Te) phase change material deposition method and phase change storage unit preparation method

The invention provides a tungsten-antimony-tellurium (W-Sb-Te) phase change material atomic layer deposition method and a phase change storage unit preparation method. The tungsten-antimony-tellurium (W-Sb-Te) phase change material atomic layer deposition method is as follows: 1) introducing a SbCl3 pulse to a substrate, washing away unabsorbed SbCl3, then introducing a (R3Si)2Te pulse, and washing away unabsorbed (R3Si)2Te and reaction by-products; 2) introducing a H2 and Si2H6 mixed pulse, washing away residual H2 and Si2H6, then introducing a WF6 pulse, and washing away residual WF6 and reaction by-products; 3) introducing the SbCl3 pulse, washing away residual SbCl3, then introducing a (R3Si)3Sb pulse, and washing away unabsorbed (R3Si)3Sb and reaction by-products; 4) repeating the step 1)-2) or the step 1)-3) to form a cycle period. On the basis of the preparation method, a corresponding phase change storage unit can be prepared. A tungsten-antimony-tellurium (W-Sb-Te) phase change material prepared by the method has the characteristics of accurately controllable thickness, good film compactness and strong pore-filling capability. A phase change film prepared by using the method can realize high-density storage when applied to a memorizer, and meanwhile a low power--power dissipation device can be obtained.
Owner:SHANGHAI INST OF MICROSYSTEM & INFORMATION TECH CHINESE ACAD OF SCI

A spin-orbit momentum moment magnetic memory without external magnetic field

Disclosed is a spin-orbit torque magnetic random access memory (SOT-MRAM) without an external magnetic field. The spin-orbit torque magnetic tunneling junction(SOT-MTJ) of the random access memory is based on perpendicular magnetic anisotropy, apart from comprising an anti-parallel layer, a tunneling barrier layer, a reference layer and an antiferromagnetc metal layer in a conventional MTJ structure, is also additionally provided with a nonferromagnetic metal layer, optimizes the material of the antiferromagnetc metal layer and improves the shape of the tunneling barrier layer; and the SOT-MTJ structure is successively provided with seven layers which are respectively a bottom electrode, the nonferromagnetic metal layer, a first ferromagnetic metal layer, i.e., the anti-parallel layer, a wedge tunneling barrier layer, a second ferromagnetic metal layer, i.e., the reference layer, the antiferromagnetc metal layer and a top electrode from the bottom to the top. According to the invention, writing operation can be carried out without the external magnetic field. Compared to a conventional SOT-MRAM, the energy consumption is smaller, and the geometric ratio micro-shrink performance reduced along with a technical node is more excellent.
Owner:致真存储(北京)科技有限公司

Deposition method of tungsten-antimony-tellurium phase change material and preparation method of phase change memory unit

The invention provides a tungsten-antimony-tellurium (W-Sb-Te) phase change material atomic layer deposition method and a phase change storage unit preparation method. The tungsten-antimony-tellurium (W-Sb-Te) phase change material atomic layer deposition method is as follows: 1) introducing a SbCl3 pulse to a substrate, washing away unabsorbed SbCl3, then introducing a (R3Si)2Te pulse, and washing away unabsorbed (R3Si)2Te and reaction by-products; 2) introducing a H2 and Si2H6 mixed pulse, washing away residual H2 and Si2H6, then introducing a WF6 pulse, and washing away residual WF6 and reaction by-products; 3) introducing the SbCl3 pulse, washing away residual SbCl3, then introducing a (R3Si)3Sb pulse, and washing away unabsorbed (R3Si)3Sb and reaction by-products; 4) repeating the step 1)-2) or the step 1)-3) to form a cycle period. On the basis of the preparation method, a corresponding phase change storage unit can be prepared. A tungsten-antimony-tellurium (W-Sb-Te) phase change material prepared by the method has the characteristics of accurately controllable thickness, good film compactness and strong pore-filling capability. A phase change film prepared by using the method can realize high-density storage when applied to a memorizer, and meanwhile a low power--power dissipation device can be obtained.
Owner:SHANGHAI INST OF MICROSYSTEM & INFORMATION TECH CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products