Paste extruded insulator with air channels

a technology of extruded insulators and air channels, which is applied in the direction of insulating conductors/cables, cables, insulated conductors, etc., can solve the problems of difficult formation of large diameter ptfe insulators into large diameter insulators for wires, high cost of large diameter ptfe insulators, and inability to form structures of polyethylene, polypropylene or polyvinyl chloride, etc., to facilitate drying

Inactive Publication Date: 2005-06-30
EI DU PONT DE NEMOURS & CO
View PDF15 Cites 19 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0011] In one preferred embodiment, the channel forming-member is supported upstream of the orifice. In another preferred embodiment, the extrusion device has multiple channel-forming members which form multiple closed longitudinal channels spaced apart from each other. In a more preferred embodiment, the lubricated PTFE fine powder is forced around the channel-forming member into a space between the conductor and the channel forming member pressure coalescing the lubricated PTFE fine powder into the lubricated green extrudate around the conductor. Preferably, the extrusion device has a high shear region formed at the juncture of the chamber and the orifice which causes substantial fibrillation and the pressure coalescing is performed upstream of the high shear region. Preferably, the lubricated green extrudate is dried and, most preferably, gas is circulated though the air channel of the lubricated green extrudate to facilitate lubricant removal during drying. For most applications, it is also preferred to sinter the dried green extrudate.

Problems solved by technology

However, despite the desirable properties of high molecular weight PTFE, namely low dielectric constant and low dissipation factor, other polymers have been used in forming insulation for wires, especially in large diameter, high frequency coaxial transmission cable because of the processing limitations of PTFE.
Nonetheless, PTFE has been difficult to form into large diameter insulators for wire because of difficulties in drying the green extrudate to remove the lubricant from thick structures of paste extruded PTFE fine powder.
Large diameter PTFE insulators have also been expensive because of the quantity of PTFE fine powder required.
Another significant requirement for high frequency communication cable is noncombustibility that fluoropolymers can provide but structures of polyethylene, polypropylene or polyvinyl chloride cannot.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Paste extruded insulator with air channels
  • Paste extruded insulator with air channels
  • Paste extruded insulator with air channels

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0018] This invention relates to a process for paste extruding lubricated PTFE fine powder around a conductor forming an insulator having at least one closed continuous longitudinal air channel spaced apart from the conductor. Air channels in the insulator provide a means for aiding the removal of volatilized lubricant from the green extrudate during manufacture and for reducing the dielectric constant of the sintered product which is especially useful for high frequency communication cables.

[0019] The process of paste extrusion of lubricated PTFE fine powder may be understood with reference to FIG. 1 wherein there is shown an extrusion device 1 having a barrel 2 and a die 4. Inside device 1 there is defined a chamber 3 for supplying lubricated PTFE which leads to extrusion orifice 5. Positioned within the chamber is mandrel 10 for shaping the PTFE and positioned within orifice 5 is at least one channel-forming member 8. The die and the mandrel cause chamber 3 to converge in the ar...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
diameteraaaaaaaaaa
diameteraaaaaaaaaa
viscosityaaaaaaaaaa
Login to view more

Abstract

The invention provides an insulated wire having a conductor and an insulator of paste extruded PTFE fine powder around the conductor. The paste extruded insulator has at least one closed continuous longitudinal air channel spaced apart from the conductor. The invention further provides a process for forming an insulator around a conductor by paste extruding lubricated PTFE fine powder in an extrusion device comprising a die, mandrel, and at least one channel-forming member. The die and mandrel form a converging chamber leading to an extrusion orifice and the channel-forming member is positioned in the orifice. The mandrel has a central bore for supplying the conductor. Lubricated PTFE fine powder is forced through the chamber and out of the exit of the orifice as a lubricated green extrudate around the conductor forming an insulator with at least one closed longitudinal air channel spaced apart from the conductor.

Description

FIELD OF THE INVENTION [0001] This invention relates to an insulated wire and a method for manufacturing it by paste extruding an insulator of polytetrafluoroethylene. BACKGROUND OF THE INVENTION [0002] Polytetrafluoroethylene (PTFE) fine powder has been used for many years as a wire insulator. However, despite the desirable properties of high molecular weight PTFE, namely low dielectric constant and low dissipation factor, other polymers have been used in forming insulation for wires, especially in large diameter, high frequency coaxial transmission cable because of the processing limitations of PTFE. [0003] Polytetrafluoroethylene (PTFE) fine powder is a type of PTFE that is made by aqueous dispersion polymerization, followed by coagulation of the dispersion and drying of the resultant coagulated solids to obtain the fine powder. Because the PTFE fine powder does not flow in the melt condition sufficiently to enable melt processing, the powder has been fabricated into articles and...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): B29C48/06B29C48/32B29C48/475B29C63/20H01B3/44H01B11/18H01B13/00H01B13/016H01B13/14
CPCB29C47/0004B29C47/0023B29C47/02B29C47/20H01B13/14B29K2027/18H01B3/445H01B11/1856H01B13/016B29C47/54B29C48/15B29C48/022B29C48/09B29C48/32B29C48/475B29C48/06
Inventor LEVY, DANIEL N.AESCHBACH, KURT
Owner EI DU PONT DE NEMOURS & CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products