Compensation of human variability in pulse oximetry

a pulse oximeter and human variability technology, applied in the field of pulse oximeters, can solve the problems of short-lived effect of dyes, large deviation in pulse oximeter readings, and inability to accurately measure the accuracy of pulse oximeters

Inactive Publication Date: 2005-11-10
GENERAL ELECTRIC CO
View PDF20 Cites 62 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0039] These and other objectives of the invention are accomplished in accordance with the principles of the present invention by providing a mechanism by means of which the subject-specific deviation in the tissue-induced effects on the accuracy of the pulse oximeter can be taken into account. Thus, the accuracy of the pulse oximeter is improved by taking into account the subject-specific light transmission through the tissue, and changing the values input to the ideal model, i.e. the nominal transformation and the nominal extinction coefficients, on the basis of the measurement to compensate for the subject-specific changes.

Problems solved by technology

Therefore, if these species of hemoglobin are present in higher concentrations than normal, a pulse oximeter may display erroneous data.
Secondly, intravenous dyes used for diagnostic purposes may cause considerable deviation in pulse oximeter readings.
However, the effect of these dyes is short-lived since the liver purifies blood efficiently.
Thirdly, coatings like nail polish may in practice impair the accuracy of a pulse oximeter, even though the absorption caused by them is constant, not pulsatile, and thus in theory it should not have an effect on the accuracy.
Fourthly, the optical signal may be degraded by both noise and motion artifacts.
One source of noise is the ambient light received by the photodetector.
As mentioned above, the accuracy of a pulse oximeter utilizing an average transformation is not necessarily sufficient, especially if analytes which are weak absorbers are to be measured or if two analytes absorb similarly, whereby it is difficult to distinguish the said analytes from each other.
This causes one drawback of the current pulse oximeters; they are incapable of taking this human variability into account.
However, in multi-wavelength applications in general, and especially if weak absorbers, such as COHb, are to be measured, the human variability represents a much more serious problem.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Compensation of human variability in pulse oximetry
  • Compensation of human variability in pulse oximetry
  • Compensation of human variability in pulse oximetry

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

Guidelines for Implementing the Invention

[0087] The method of the present invention is implemented in the control unit of the pulse oximeter on the basis of the four modulation signals described above, i.e. the novelty of the system resides within the control unit itself. However, to be able to perform the self-calibration in conjunction with each patient, the control unit requires some pre-calculated data, which is stored in the memory of the pulse oximeter. Instead of being stored in conjunction with the control unit, this data, or at least part of it, can also be stored in the sensor part of the pulse oximeter. The sensor part, including at least the LEDs and the photo detector, is connected to the signal processing part, which includes the control unit. Consequently, depending on the overall configuration, the novelty can also reside partly in the sensor.

[0088] Human tissue can influence the accuracy of a pulse oximeter by two different mechanisms. First a direct wavelength s...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The invention relates to a method of calibrating a pulse oximeter, in which the effects caused by tissue of a subject can be taken into account. A detector output signal is measured when living tissue of the subject is present between emitters and the detector in a sensor. Nominal calibration and nominal calibration characteristics are read from a memory, whereupon values for the same nominal characteristics for the sensor on living tissue of the subject are established using the detector output signal. Then, changes in the nominal calibration characteristics induced by the living tissue are calculated and a subject-specific calibration is formed by correcting the nominal calibration with the changes. Finally, the hemoglobin fractions are solved using the corrected nominal calibration. The invention also relates to a pulse oximeter having pre-stored data in a memory comprising data of initial characterization measurements, data of nominal characteristics describing calibration conditions under which a predetermined calibration of the apparatus has been applied, and data of nominal calibration and nominal calibration characteristics. An extinction coefficient compensation block is operatively connected to the first signal processing means and to the memory for reading data, said block comprising first calculation means adapted to correct the nominal characteristics of the sensor on living tissue of the subject. A transformation compensation block is operatively connected to the first signal processing means for receiving the DC signals and to the memory for reading data, said block comprising second calculation means adapted to correct the transformation values based on the changes in the DC signals induced by tissue of the subject. Alternatively, said data may be stored in the sensor part of the pulse oximeter.

Description

FIELD OF THE INVENTION [0001] The invention relates generally to pulse oximeters used to detect blood oxygenation. More specifically, the invention relates to a method for taking into account human variability in pulse oximeters. The invention further relates to a sensor allowing compensation for the inaccuracies caused by human variability, the sensor being an integral part of the pulse oximeter. BACKGROUND OF THE INVENTION [0002] Pulse oximetry is at present the standard of care for continuous monitoring of arterial oxygen saturation (SPO2). Pulse oximeters provide instantaneous in-vivo measurements of arterial oxygenation, and thereby an early warning of arterial hypoxemia, for example. [0003] A pulse oximeter comprises a computerized measuring unit and a probe attached to the patient, typically to a finger or ear lobe. The probe includes a light source for sending an optical signal through the tissue and a photo detector for receiving the signal after transmission through the ti...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): A61B5/00
CPCA61B5/1495A61B5/14551
Inventor HUIKU, MATTI
Owner GENERAL ELECTRIC CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products