Homeostatic flying hovercraft

Inactive Publication Date: 2006-07-06
SPIROV PETER +1
View PDF99 Cites 58 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0025] The present invention is a homeostatic flying hovercraft that preferably utilizes at least two pairs of counter-rotating ducted fans to generate lift like a hovercraft and utilizes a homeostatic hover cont

Problems solved by technology

While numerous concepts relating to spinning, flying disc-shaped craft have been put forth in a variety of patents and publications, a practical embodiment of a self-powered flying saucer has yet to be developed.
Even so, the difficulty in controlling and maneuvering such a VTOL aircraft on both take-offs and landings, as well as transitions from vertical to horizontal flight, continues to plague the general acceptance of VTOL aircraft as evidenced by the ongoing difficulties with the US Marine Corp's V-22 Osprey aircraft.
The problem with this arrangement is similar to the problems encountered with helicopters, namely the rotation of a single fan imparts a one-way spin or torque that must somehow be counteracted in order for the craft to remain stable.
As one might expect, the trickiest part of controlling this craft occurs during the transitions between vertical and horizontal orientations.
Currently available information indicates that the smaller OAV models of the Kestrel project are still not ready for use.
While this represents an improvement in terms of simplicity and operability, model airplanes, and particularly model helicopters, are still expensive, complicated, temperamental and fragile hobby toys that can require months to build, learn, rebuild and master.
Unfortunately, each of these craft is still difficult to control and maneuver and all of these craft rely on multiple conventional helicopter rotors to provide aerodynamic lift, rotors that are easily damaged in the event of a crash.
Like all exposed rotor craft, these multi-rotor models are also inherently dangerous due to the exposed spinning rotors.
While the research is interesting, the project has no practical guidance on how to make a model-sized RC flying craft for here on Earth because of the differences in gravity and air density as compared to Mars.
Although his design proposed the use of counter-rotating ducte

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Homeostatic flying hovercraft
  • Homeostatic flying hovercraft
  • Homeostatic flying hovercraft

Examples

Experimental program
Comparison scheme
Effect test

Example

[0096]FIG. 11 depicts a first embodiment of the stabilizer circuit for the hovercraft 10. The XY axis mercury tilt switch stabilizer transducers 52 are linked electrically to the appropriate circuit for roll and pitch correction. For example, the N and S transducers 64 provide status information with regard to pitch actuation 104 while the E and W transducers 64 provide status information with regard to roll actuation 106.

[0097]FIG. 12 shows a block diagram for enable from the X stabilizer circuit or the Y stabilizer circuit to the piezo gyros 56. FIG. 13 shows a schematic diagram of the control system for the motor controllers 58 incorporating the outputs of the stabilizer circuits 52 and the gyro circuits 56. For example, voltage adder 108 computes inputs from Xgyro A, Xstab A, Zgyro A, and Vu / d. Voltage to frequency converters 110 made up of a 555 timer / op amp circuits convert the combined voltage to a frequency for the respective motor speed controllers 58. FIGS. 14-15 show alt...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A homeostatic flying hovercraft preferably utilizes at least two pairs of counter-rotating ducted fans to generate lift like a hovercraft and utilizes a homeostatic hover control system to create a flying craft that is easily controlled. The homeostatic hover control system provides true homeostasis of the craft with a true fly-by-wire flight control and control-by-wire system control.

Description

FIELD OF THE INVENTION [0001] The present invention relates generally to the field of heavier-than-air aeronautical craft that are sustained in air by the force of a fluid such as air. More particularly, the present invention relates to a homeostatic flying hovercraft and to a radio controlled flying saucer toy employing the principals of a homeostatic flying hovercraft. BACKGROUND OF THE INVENTION [0002] Ever since the term “flying saucer” was first introduced in 1947, the concept of a circular flying craft has become a staple of popular culture. Unlike conventional aircraft in which lift is produced by the difference between the air flowing over the top versus the bottom of a wing, most flying saucers have proposed using the aerodynamic effect of a spinning disc to at least partially generate the lift required for the craft. The flying disc toy known as the Frisbee® is perhaps the best example of this principal. While numerous concepts relating to spinning, flying disc-shaped craf...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): B64C39/00B60V1/06B64C27/20
CPCB60V1/06B60V1/10B64C27/20G05D1/0858B64U30/00B64U30/20B64U50/19B64U2201/20B64C39/024G05D1/0022G05D1/0816B64C15/02B64C27/08B64D27/24G05D1/0016B64C39/001
Inventor SPIROV, PETERPEDERSEN, BRAD
Owner SPIROV PETER
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products