Pancreatic progenitor cells and methods for isolating the same
a pancreatic progenitor cell and pancreatic stem cell technology, applied in the field of models for identifying and isolating pancreatic stem cells, can solve the problems of pathological consequences of targeted cell loss or aberrant cell growth and developmen
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Examples
example 1
Expression of KGF in the Islets of Langerhans Leads to Pancreatic Hepatocyte Generation and Duct Cell Proliferation
[0079] To better understand the role of KGF in pancreatic development, a model system was established in which the influence of localized KGF expression on the growth and development of the pancreas can be assessed. A transgenic mouse model was constructed in which expression of the murine KGF-coding polynucleotide controlled by the human insulin promoter, resulting in KGF expression within beta cells in the islets of Langerhans. Ectopic KGF expression resulted in several changes to the pancreas, as described below. The ins-KGF mouse therefore provides a valuable system for studies designed to enhance understanding of pancreatic growth and development.
[0080] Generation of ins-KGF transgenic mice To generate ins-KGF transgenic mice, the 585 base pair (bp) KGF cDNA was obtained by reverse transcriptase polymerase chain reaction (RT-PCR) of mRNA from mouse salivary gland...
example 2
Transgenic Expression of EGF in Pancreatic Beta Cells Results in Substantial Morphological Changes
[0091] EGF was ectopically expressed in transgenic mice using a human insulin promoter. The beta cell-targeted expression of EGF resulted in significant morphological changes, including cellular proliferation and disorganized islet of Langerhans growth. The mice were normnoglycemic. Interestingly, insulin-producing beta cells were found in some of the ducts of older ins-EGF transgenic mice. This EXAMPLE therefore shows that both EGF can affect pancreatic development and growth.
[0092] Generation of ins-EGF transgenic mice To determine the influence of EGF expression in the beta cells of the pancreas, transgenic mice expressing murine EGF under control of the human insulin promoter were generated (ins-EGF). The 280-bp EGF cDNA was used to generate the ins-EGF transgenic mouse. The cDNA was cloned into a vector containing the human insulin promoter and the hepatitis b 3′ untranslated pol...
example 3
Transgenic Expression of EGF and KGF in Pancreatic Beta Cells Results in Substantial Morphological Changes
[0101] Two important growth factors for pancreatic development, EGF and KGF, were ectopically expressed in transgenic mice using the human insulin promoter. The beta cell-targeted expression of either EGF or KGF resulted in significant morphological changes, including cellular proliferation and disorganized islet of Langerhans growth In both cases, the mice were normoglycemic. Intercrossing the individual ins-EGF and ins-KGF transgenic mice to generate Ins EGF x KGF mice resulted in transgenic mice with more profound changes in pancreatic morphology than was seen for either growth factor alone. Proliferation of pancreatic cells was also observed in the double transgenic mouse, as was extensive intra-islet fibrosis, which was found to increase in severity with time. Interestingly, insulin-producing beta cells were found in some of the ducts of older ins-EGF and ins-EGF x KGF tra...
PUM
Property | Measurement | Unit |
---|---|---|
temperature | aaaaa | aaaaa |
length | aaaaa | aaaaa |
diameter | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com