Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Apparatus and method for manufacturing semiconductor device

Inactive Publication Date: 2007-08-09
SEMICON ENERGY LAB CO LTD
View PDF6 Cites 35 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0006]In order to reduce cost, it is preferable to form a plurality of semiconductor integrated circuits over an element substrate with high integration density. Meanwhile, an antenna should be formed to have a predetermined shape and size in order to receive electromagnetic waves with a predetermined frequency. Therefore, the pitch of a plurality of semiconductor integrated circuits formed over an element substrate tends to be narrower than that of a plurality of antennas over a flexible substrate. In that case, it has been impossible to electrically connect the plurality of semiconductor integrated circuits formed over the element substrate to the plurality of antennas over the flexible substrate at the same time. Therefore, it has been necessary to repeat the operation of connecting each of the plurality of semiconductor integrated circuits formed over the element substrate to one of the plurality of antennas over the flexible substrate, one by one. Thus, a long tact time is required, which results in high manufacturing cost of the semiconductor device.
[0007]In view of the foregoing, it is an object of the invention to provide a manufacturing method of a low-cost semiconductor device, and a manufacturing apparatus capable of manufacturing a semiconductor device at low cost.
[0029]By the manufacturing method of a semiconductor device of the invention, a semiconductor device can be manufactured through the steps of picking up a plurality of semiconductor integrated circuits by a plurality of holders; controlling the pitch of the plurality of holders so that connection terminals of the semiconductor integrated circuits can be positioned opposite respective connection terminals of elements; and connecting the semiconductor integrated circuits to the respective elements. Therefore, even when the pitch of the connection terminals of the adjacent semiconductor integrated circuits is different from the pitch of the connection terminals of the adjacent elements, it is possible to attach the semiconductor integrated circuits to the respective elements only by controlling the pitch of the plurality of holders while picking up the semiconductor integrated circuits from an element substrate and positioning them to be opposite the respective elements. Furthermore, by picking up a plurality of semiconductor integrated circuits and attaching them to a plurality of elements through a sequence of steps, a plurality of semiconductor devices can be manufactured. Therefore, a tact time can be reduced and mass productivity can be improved. Thus, a manufacturing method of a low-cost semiconductor device can be provided.
[0030]A manufacturing apparatus of a semiconductor device of the invention includes a jig which has a plurality of holders arranged in a row, a controller for controlling the pitch of the plurality of holders arranged in a row, a support means provided with a plurality of semiconductor integrated circuits, and a support means provided with a flexible substrate having a plurality of elements. The jig includes a plurality of holders arranged in a row and a controller for controlling the pitch of the holders. Therefore, even when the pitch of the connection terminals of the adjacent semiconductor integrated circuits is different from the pitch of the connection terminals of the adjacent elements, the semiconductor integrated circuits can be attached to the elements only by controlling the pitch of the plurality of holders while picking up the semiconductor integrated circuits from an element substrate and positioning them to be opposite the respective elements. Furthermore, by picking up a plurality of semiconductor integrated circuits and attaching them to a plurality of elements through a sequence of steps, a plurality of semiconductor devices can be manufactured. Therefore, a tact time can be reduced and mass productivity can be improved. Thus, a manufacturing apparatus capable of manufacturing a semiconductor device at low cost can be provided.

Problems solved by technology

In that case, it has been impossible to electrically connect the plurality of semiconductor integrated circuits formed over the element substrate to the plurality of antennas over the flexible substrate at the same time.
Thus, a long tact time is required, which results in high manufacturing cost of the semiconductor device.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Apparatus and method for manufacturing semiconductor device
  • Apparatus and method for manufacturing semiconductor device
  • Apparatus and method for manufacturing semiconductor device

Examples

Experimental program
Comparison scheme
Effect test

embodiment mode 2

[0083]In this embodiment mode, an apparatus and a method for manufacturing a semiconductor device which employs a roll-to-roll system is described, with reference to FIGS. 2A to 2D, 3A to 3D, 4A to 4D and 19.

[0084]As shown in FIG. 19, a manufacturing apparatus of a semiconductor device in this embodiment mode includes a supply roller 205 around which a flexible substrate 208 having antennas 209 is wound, a roller 206 which controls the movement of the flexible substrate 208 and mounts semiconductor integrated circuits 202 on the respective antennas 209, and a collecting roller 207 for winding up the flexible substrate 208 having the antennas 209 on which the semiconductor integrated circuits 202 are mounted. The manufacturing apparatus also includes a support means 201 for supporting the semiconductor integrated circuits 202 and a roller 203 having holders 204 for catching and holding the semiconductor integrated circuits 202. Note that the holders 204 are arranged in a row on the s...

embodiment mode 3

[0115]In this embodiment mode, examples of a manufacturing method of a semiconductor device is described with reference to FIGS. 5A and 5B, and 6A to 6C, which vary depending on which surface of the semiconductor integrated circuit over the support means 201 is provided with connection terminals. Note that in this embodiment mode, although description will be made by using the manufacturing apparatus of a semiconductor device shown in FIGS. 2A to 2D, the manufacturing apparatuses of a semiconductor device shown in FIGS. 3A to 4D can also be used as appropriate.

[0116]FIGS. 5A and 5B show cross sections of a manufacturing apparatus of a semiconductor device in the x-axis direction, similarly to FIGS. 2A and 2C. Although not shown in FIGS. 5A and 5B, a plurality of holders are arranged in a row in the y-axis direction of the roller, similarly to FIGS. 2B and 2D. Similarly, FIGS. 6A to 6C show cross sections of a manufacturing apparatus of a semiconductor device in the x-axis direction ...

embodiment mode 4

[0138]In this embodiment mode, a jig which is applicable to Embodiment Mode 2 or 3 is described with reference to FIGS. 7A, 7B, 8A and 8B.

[0139]A manufacturing apparatus of a semiconductor device shown in FIGS. 7A and 7B has a jig in which a roller 241 is provided with 2n (n is natural number) sets of holders. In FIGS. 7A and 7B, a jig in which the roller 241 is provided with two sets of holders 242a and 242b is shown. A pair of the holders 242a and 242b are preferably provided to be symmetrical about the rotation axis of the roller 241. As a result, a row of semiconductor integrated circuits over the support means 201 can be picked up, while at the same time another row of semiconductor integrated circuits can be attached to the flexible substrate 208 having antennas during a rotation of 1 / 2n. Therefore, throughput can be improved.

[0140]Here, by rotating the rollers 206 and 241 in opposite directions or in the same direction, semiconductor integrated circuits 202a over the support ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Flexibilityaaaaaaaaaa
Login to View More

Abstract

The manufacturing apparatus of a semiconductor device includes a jig having a plurality of holders arranged in a row, a controller for controlling the pitch of the plurality of holders arranged in a row, a support means provided with a plurality of semiconductor integrated circuits, and a support means provided with a substrate having a plurality of elements. By mounting the semiconductor integrated circuits on the respective elements by using the jig having the plurality of holders arranged in a row, semiconductor devices are manufactured.

Description

BACKGROUND OF THE INVENTION[0001]1. Field of the Invention[0002]The present invention relates to a manufacturing apparatus of a semiconductor device. In addition, the invention relates to a manufacturing method of a semiconductor device by which a semiconductor integrated circuit is electrically connected to a circuit (or an element) provided over a substrate (or a flexible substrate). In particular, the invention relates to a manufacturing method of a semiconductor device which performs data input / output by wireless communication via an antenna.[0003]2. Description of the Related Art[0004]A semiconductor device which includes an antenna and a semiconductor integrated circuit electrically connected to the antenna has been drawing attention as an RFID tag. An RFID tag is also called an IC tag, an ID tag, a transponder, an IC chip, or an ID chip. A manufacturing method of an RFID tag is proposed, which includes the steps of providing a plurality of antennas over a flexible substrate, ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): G11C11/24
CPCH01L2924/14Y10T29/41H01L24/75H01L24/81H01L2224/16225H01L2924/01029H01L2924/10253H05K13/0478Y10T29/4913Y10T29/49169Y10T29/49018H01L2924/13091H01L2924/07811H01L2224/97H01L2224/81815H01L2224/81192H01L2924/00H01L2924/00014H01L2224/81H01L2924/15788H01L2224/05008H01L2224/05548H01L2224/05001H01L2224/05572H01L24/05H01L2224/05599
Inventor NAKAMURA, OSAMUITO, KYOSUKE
Owner SEMICON ENERGY LAB CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products