Cropping systems for managing weeds
a technology for managing weeds and cropping, applied in the field of cropping systems for managing weeds, can solve the problems of reducing crop quality, crop loss, and crop loss of farmers, and reducing crop yield, so as to minimize the development and minimize the development of herbicide resistant weeds
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Examples
example 1
Cropping Systems for Managing Weeds
[0122]One embodiment of the present invention is exemplified by Tables 3-5, in which crops tolerant to glyphosate, dicamba, glufosinate, 2,4 D, or a combination thereof (I to X) are utilized with accompanying herbicidal treatments (First to Fifth) at different stages of plant growth and development for managing weeds. For soybean, plant growth stages may be defined as follows: emergence is termed the “VE” growth stage, while early post-emergence soybean stages are often termed “VC” to “V3”, and late post-emergence soybean stages are termed “V4” to “R2” (e.g. McWilliams et al., 1999). “Pre-harvest” typically occurs after soybean is physiologically mature, but before harvest, while “post-harvest” occurs after harvest has occurred. “Pre-emergence” application of herbicide therefore refers to an application prior to crop and weed emergence either, before or after planting.
[0123]For cotton the timing of growth stages and related herbicide application ma...
example 2
A Method for Minimizing the Development of Herbicide Resistant Weeds
[0131]As shown in Table 7, a method for minimizing the development of a herbicide resistant weed population is exemplified by rotating a first cropping system (I to XII; Table 3) in a first year comprising a crop tolerant to one or more low-risk herbicides and accompanying herbicidal treatments with a second cropping system (I to XII; Table 3) in a second year comprising a crop tolerant to one or more low-risk herbicides and accompanying herbicidal treatments. For example, if the crop in the first cropping system is tolerant to glyphosate then the crop in the second cropping system can be tolerant to an auxin like herbicide or tolerant to glyphosate and an auxin like herbicides. Herbicide rates are given in Table 4 and Table 5 for soybean and cotton, respectively. Equipments and methods known in the art are used for applying various herbicide treatments.
TABLE 7Examples of methods for minimizing the development ofher...
example 3
Production of Transgenic Soybean Having Dicamba and Glyphosate Tolerances for Use in Cropping Systems for Manging Weeds
[0132]Methods for producing transgenic seeds having glyphosate tolerance are known in the art and such seeds can be produced by persons of skill in the art by using a polynucleotide encoding glyphosate resistant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) as described in U.S. Pat. No. 5,627,061, U.S. Pat. No. RE39,247, U.S. Pat. No. 6,040,497 and in U.S. Pat. No. 5,094,945, WO04074443 and WO04009761, all of which are hereby incorporated by reference. Soybean breeding lines containing the Roundup Ready® trait event 40-3-2 (Padgette et al., 1995) have been produced. Seeds from soybean plant designated as MON19788 have been deposited under ATCC Accession No. PTA-6708.
[0133]Glyphosate tolerant plants can also be produced by incorporating polynucleotides encoding glyphosate degrading enzymes such as glyphosate oxidoreductase (GOX, U.S. Pat. No. 5,463,175, herein ...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com