Method of polishing transparent armor

Inactive Publication Date: 2012-11-15
3M INNOVATIVE PROPERTIES CO
View PDF31 Cites 26 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0011]In another aspect of the disclosure, the method further comprises providing a second structured abrasive article comprising a backing and a plurality of shaped composites comprising diamonds therein, the diamonds having a smaller particle size than the diamonds of the first abrasive article, securing the second abrasive article to a rotary grinder to form an abrasive tool, and moving the second abrasive article relative to the transparent armor such that the second abr

Problems solved by technology

The combination of the hard ceramic and polymeric layers causes disintegration of the projectile and inhibits the penetration of the projectile through and possibly cause injury.
Even if the hot-pressed ceramic body is dense and pore-free, the rough outer surfaces cause scatterin

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method of polishing transparent armor
  • Method of polishing transparent armor

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0116]Abrasive article Example 1 listed in Table 3 was prepared according to Method 2, and included 9 μm vitrified agglomerate abrasive particles prepared according to Method 1. Example 1 was used to grind spinel ceramic test samples according to Method 3 and resulting surface finishes were measured according to Method 4. Test results are summarized in Table 4. Example 1 comprised hexagonal shaped abrasive composites having an abrasive diamond content of 7.00 weight percent, 2.22 shaped abrasive composites per linear cm, 5.37 shaped abrasive composites per cm2 and a bearing area ratio of 58.0 percent.

examples 2-4

[0117]Abrasive article Examples 2-4 listed in Table 3 were prepared according to Method 2. Examples 2-4 were used to grind spinel ceramic test samples according to Method 3 and resulting surface finishes were measured according to Method 4. Test results are summarized in Table 4.

[0118]Example 2 comprised hexagonal shaped abrasive composites having an abrasive diamond content of 27.60 weight percent, 2.33 shaped abrasive composites per linear cm, 6.12 shaped abrasive composites per cm2, and a bearing area ratio of 64.0 percent.

[0119]Example 3 comprised hexagonal shaped abrasive composites having an abrasive diamond content of 26.20 weight percent, 2.33 shaped abrasive composites per linear cm, 6.12 shaped abrasive composites per cm2, and a bearing area ratio of 64.0 percent.

[0120]Example 4 comprised hexagonal shaped abrasive composites having an abrasive diamond content of 25.70 weight percent, 2.33 shaped abrasive composites per linear cm, 6.12 shaped abrasive composites per cm2, an...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Fractionaaaaaaaaaa
Fractionaaaaaaaaaa
Fractionaaaaaaaaaa
Login to view more

Abstract

A method of polishing transparent armor, preferably to optical clarity. The method can be used on flat or contoured armor, manually or via robotic automation. The method includes using a step-wise progression of diamond, structured abrasive articles.

Description

CROSS REFERENCE TO RELATED APPLICATION[0001]This application claims the benefit of U.S. Provisional Patent Application No. 60 / 896,016, filed Mar. 21, 2007, the disclosure of which is incorporated by reference herein in its entirety.TECHNICAL FIELD[0002]This disclosure relates to a method for polishing a transparent armor, to an optically clear finish, using abrasive articles. The transparent armor may be flat or curved.BACKGROUND [0003]In recent years there has been a tremendous amount of interest in transparent armor for both military and civilian protection. It is desired that the transparent armor is abrasion resistant, relatively low cost, and relatively low weight, and in many applications, it is desired that the transparent armor is optically clear. Likewise since there are countless types of threats (bullets, improvised explosive devices (IEDs), etc.), transparent armor preferably should be effective against multiple types of projectiles and preferably against multiple strike...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): B24B1/00B24D3/00
CPCB24B1/00B24B19/00B24B37/22B24B37/245F41H5/0407B24D3/14B24D9/00B24D11/02B24B37/26
Inventor BILLIG, DANIEL A.BARRY, JOHN L.MCARDLE, JAMES L.HAWKINS, ANN M.
Owner 3M INNOVATIVE PROPERTIES CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products