Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

14327results about "Plane surface grinding machines" patented technology

Flat sic semiconductor substrate

Methods for manufacturing silicon carbide wafers having superior specifications for bow, warp, total thickness variation (TTV), local thickness variation (LTV), and site front side least squares focal plane range (SFQR). The resulting SiC wafer has a mirror-like surface that is fit for epitaxial deposition of SiC. The specifications for bow, warp, total thickness variation (TTV), local thickness variation (LTV), and site front side least squares focal plane range (SFQR) of the wafer are preserved following the addition of the epitaxy layer.
Owner:SK SILTRON CSS LLC

Wafer carrier checker and method of using same

A tool and method for assessing whether a disk carrier, and especially a carrier for holding semiconductor disks, is properly dimensioned. The tool has a body that includes a socket in which a portion of the disk carrier will seat fully if the disk carrier is properly dimensioned. Alignment structures may be provided in the socket to align with features of the carrier to assist in determining whether the disk carrier is properly dimensioned. The socket may include two spaced apart cavities that correspond with end portions of walls of the disk carrier.
Owner:MICREL

Abrasive grain, abrasive articles, and methods of making and using the same

Alpha alumina-based abrasive grain. The abrasive grain can be incorporated into abrasive products such as coated abrasives, bonded abrasives, non-woven abrasives, and abrasive brushes.
Owner:3M INNOVATIVE PROPERTIES CO

Dynamic lot allocation based upon wafer state characteristics, and system for accomplishing same

In one illustrative embodiment, the method comprises providing a plurality of wafer lots, each of the lots comprising a plurality of wafers, performing at least one process operation on at least some of the wafers in each of the plurality of lots, identifying processed wafers having similar characteristics, re-allocating the wafers to lots based upon the identified characteristics, and performing additional processing operations on the identified wafers having similar characteristics in the re-allocated lots. In one illustrative embodiment, the system comprises a first processing tool for performing processing operations on each of a plurality of wafers in each of a plurality of wafer lots, a controller for identifying processed wafers having similar characteristics and re-allocating the wafers to lots based upon the identified characteristics, and a second processing tool adapted to perform additional processing operations on the identified wafers having similar characteristics in the re-allocated lot.
Owner:GLOBALFOUNDRIES INC

Methods for controlling the pressures of adjustable pressure zones of a work piece carrier during chemical mechanical planarization

Methods are provided for controlling adjustable pressure zones of a CMP carrier. A method comprises determining a first thickness of a layer on a wafer underlying a first zone of the carrier. A first portion of the layer underlying the first zone is removed. The first zone is configured to exert a first pressure against the second surface of the wafer. A second thickness of the layer underlying the first zone is determined and a target thickness corresponding to a predetermined thickness profile is selected. A second pressure for the first zone is calculated using the first thickness, the second thickness, the first pressure, and the target thickness. The pressure exerted by the first zone against the second surface of the wafer is adjusted to the second pressure and the steps are repeated for a second zone.
Owner:NOVELLUS SYSTEMS

Substrate processing apparatus

A substrate processing apparatus (1) has a first polishing unit (400A) and a second polishing unit (400B) for polishing a peripheral portion of a substrate. Each of the two polishing units (400A, 400B) includes a bevel polishing device (450A, 450B) for polishing a peripheral portion of a substrate and a notch polishing device (480A, 480B) for polishing a notch of a substrate. The substrate processing apparatus (1) has a maintenance space (7) formed between the two polishing units (400A, 400B). The bevel polishing devices (450A, 450B) in the two polishing units (400A, 400B) face the maintenance space (7) so as to be accessible from the maintenance space (7).
Owner:EBARA CORP

Diamond grid CMP pad dresser

The present invention discloses a CMP pad dresser which has a plurality of uniformly spaced abrasive particles protruding therefrom. The abrasive particles are super hard materials, and are typically diamond, polycrystalline diamond (PCD), cubic boron nitride (cBN), or polycrystalline cubic boron nitride(PcBN). The abrasive particles are brazed to a substrate which may be then coated with an additional anti-corrosive layer. The anti-corrosive layer is usually a diamond or diamond-like carbon which is coated over the surface of the disk to prevent erosion of the brazing alloy by the chemical slurry used in conjunction with the CMP pad. This immunity to chemical attack allows the CMP pad dresser to dress the pad while it is polishing a workpiece. In addition to even spacing on the substrate, the abrasive particles extend for a uniform distance away from the substrate, allowing for even grooming or dressing of a CMP pad both in vertical and horizontal directions. A method of producing such a CMP pad dresser is also disclosed.
Owner:KINIK

Methods for using polishing pads

Polymer-based pads useful for polishing objects, particularly integrated circuits, having interconnected porosity which is uniform in all directions, and where the solid portion of said pad consists of a uniform continuously interconnected polymer material of greater than 50% of the gross volume of the article, are produced directly to final shape and dimension by pressure sintering powder compacts of thermoplastic polymer at a temperature above the glass transition temperature but not exceeding the melting point of the polymer and at a pressure in excess of 100 psi in a mold having the desired final pad dimensions. In a preferred version, a mixture of two polymer powders is used, where one polymer has a lower melting point than the other. When pressure sintered at a temperature not to exceed the melting point of the lower melting powder, the increased stiffness afforded by incorporation of the higher melting polymer component gives improved mechanical strength to the sintered product. Conditions for producing the pads of this invention are such that the polymer powder particles from which the pads are produced essentially retain their original shape and are point bonded to form the pad.
Owner:ROHM & HAAS ELECTRONICS MATERIALS CMP HLDG INC

Polishing apparatus and related polishing methods

Polishing apparatus and related methods employ aligned first and second magnetic field sources to adjust the compressive force and / or pressure applied by a carrier head against a target workpiece (such as a wafer) by selectively and controllably generating a repellant or attractive force between the two magnetic field sources.
Owner:SAMSUNG ELECTRONICS CO LTD

Damascene process for fabricating poles in recording heads

A method and system for manufacturing a pole for a magnetic recording head. The method and system include providing an insulator and fabricating at least one hard mask on the insulator. The at least one hard mask has an aperture therein. The method and system also include removing a portion of the insulator to form a trench within the insulator. The trench is formed under the aperture. The method and system further include depositing at least one ferromagnetic material. The pole includes a portion of the ferromagnetic material within the trench.
Owner:WESTERN DIGITAL TECH INC

Polishing pads and methods relating thereto

This invention describes improved polishing pads useful in the manufacture of semiconductor devices or the like. The pads of the present invention have an advantageous hydrophilic polishing material and have an innovative surface topography and texture which generally improves predictability and polishing performance.
Owner:ROHM & HAAS ELECTRONICS MATERIALS CMP HLDG INC

Fixed abrasive tools and associated methods

InactiveUS20050227590A1Easy to remove debrisAdequate material removal rateAbrasion apparatusPlane surface grinding machinesScreen printingMostly True
A fixed abrasive tool incorporating nanodiamond particles is described and disclosed. A fixed abrasive tool can include a polishing layer on a substrate. The polishing layer can include an organic matrix with nanodiamond particles therein. The polishing layer can be formed in a wide variety of configurations, depending on the specific polishing application. Most often, the polishing layer can include a plurality of projections which can have a wide variety of configurations in order to achieve a particular polishing performance. Nanodiamond particles used in the present invention can have a particle size from about 1 nm to about 50 nm, and preferably about 2 nm to about 10 nm. Optionally, the nanodiamond particles can include a carbonaceous coating. Such fixed abrasive tools can be formed by screen printing of a slurry of nanodiamond particles and an organic binder to form a predetermined three-dimensional pattern. Other methods can also be used to form the disclosed nanodiamond fixed abrasive tools. These fixed abrasive tools are particularly suitable for polishing expensive workpieces such as silicon wafers, integrated circuitry, gemstones, and hard drive platters.
Owner:SUNG CHIEN MIN

Apparatus for determining metal CMP endpoint using integrated polishing pad electrodes

A polishing system includes a polishing tool having a platen, a polishing pad, and a controller. The platen is adapted to have the polishing pad attached thereto. The polishing pad includes a polishing surface and a back surface that is opposite the polishing surface. At least one sender electrode and at least one response electrode is disposed in the polishing pad. The controller is coupled to the polishing tool. A method includes polishing a conductive process layer of a wafer using a polishing pad of a polishing tool having at least one sender electrode and at least one response electrode disposed therein. A signal is provided to the at least one sender electrode. The signal provided to the at least one sender electrode is monitored with at least one of a group of the at least one response electrode, the at least one response electrode communicating with the at least one sender electrode through the conductive process layer of the wafer. Endpoint of the polishing process is determined based on the signal received by the at least one response electrode.
Owner:ADVANCED MICRO DEVICES INC

Method for providing an electronic lapping guide corresponding to a near-field transducer of an energy assisted magnetic recording transducer

A method fabricates a transducer having an air-bearing surface (ABS). The method includes providing at least one near-field transducer (NFT) film and providing an electronic lapping guide (ELG) film substantially coplanar with a portion of the at least one NFT film. The method also includes defining a disk portion of an NFT from the portion of the at least one NFT film and at least one ELG from the ELG film. The disk portion corresponds to a critical dimension of the NFT from an ABS location. The method also includes lapping the at least one transducer. The lapping is terminated based on a signal from the ELG.
Owner:WESTERN DIGITAL TECH INC

Method for manufacturing a perpendicular magnetic recording head

A method and system for manufacturing a perpendicular magnetic recording head is disclosed. The method and system include providing a chemical mechanical planarization (CMP) uniformity structure having an aperture therein and forming a perpendicular magnetic recording pole within the aperture. The CMP uniformity structure may include a CMP barrier layer. The method and system further include fabricating an insulator after formation of the perpendicular magnetic recording pole and performing a CMP to remove a portion of the insulator, expose a portion of the perpendicular magnetic recording pole and planarize an exposed surface of the perpendicular magnetic recording head.
Owner:WESTERN DIGITAL TECH INC

Abrasive grain, abrasive articles, and methods of making and using the same

Alpha alumina-based abrasive grain and method of making the same. The abrasive grain can be incorporated into abrasive products such as coated abrasives, bonded abrasives, non-woven abrasives, and abrasive brushes.
Owner:3M INNOVATIVE PROPERTIES CO

Method of forming a fully wrapped-around shielded PMR writer pole

InactiveUS8533937B1Reduce and eliminate shadowing effectGood deposition coverageElectrical transducersManufacture head surfaceEngineeringNon magnetic
A method or forming a wrapped-around shielded perpendicular magnetic recording writer pole is disclosed. A structure comprising a leading shield layer and an intermediate layer disposed over the leading shield layer is provided, the intermediate layer comprising a pole material and a dielectric material. A trench is formed in the dielectric material. A non-magnetic layer in the trench is removed via an ion beam etching process. A seed layer is deposited in the trench and over the pole material. A magnetic material comprising a side shield layer is deposited on at least a portion of the seed layer.
Owner:WESTERN DIGITAL TECH INC

Method for forming a hard bias structure in a magnetoresistive sensor

A method for forming a hard bias structure in a magnetoresistive sensor is disclosed. A magnetoresistive sensor having a soft magnetic bias layer, spacer layer, and a magnetoresistive layer, is formed over a substrate having a gap layer. A mask is formed over a portion of the magnetoresistive sensor structure to define a central region. The masked structure is ion milled to remove portions not shielded by the mask, to form the central region with sloped sides, and to expose a region of the gap layer laterally adjacent the sloped sides. A first underlayer is deposited onto at least the sloped sides at a high deposition angle. A second underlayer is deposited to at least partially overlap the first underlayer, and at a first lower deposition angle. A hard bias layer is deposited over at least a portion of the second underlayer, and at a second lower deposition angle.
Owner:WESTERN DIGITAL TECH INC

Method of forming a magnetoresistive device

A method of forming a head comprises forming a write transducer on a wafer, cutting the wafer to produce a slider bar with a cut surface, and planarizing the cut surface of the slider bar. Forming the write transducer can include forming a first pole layer and forming a first pole pedestal layer over the first pole layer, where the first pole pedestal layer includes a tapered portion defined by a first end having a nose width less than a desired final nose width, and a second end having a zero throat width greater than the desired final nose width. Planarizing the cut surface of the slider bar exposes the first pole pedestal layer until a width thereof approximately equals the desired final nose width.
Owner:WESTERN DIGITAL TECH INC

Method and apparatus of sealing wafer backside for full-face electrochemical plating

The present invention provides a wafer carrier that includes a plurality of concentric sealing members that provide a seal, with the outer seal independently movable to allow cleaning of a peripheral backside of the wafer to occur while the wafer is still attached to the wafer carrier, and a plurality of vacuum openings that a re disposed only adjacent to an inner side of the inner seal at a location corresponding to the backside periphery of the wafer.
Owner:NOVELLUS SYSTEMS

Abrasive cutter containing diamond particles and a method for producing the cutter

An abrasive cutter formed of at least one diamond particle, preferably at least one mono-diamond crystal and metallic binder material distinguished by the fact that the diamond particle (D) has a size of about 50 mum to about 500 mum and each diamond particle (D) is enclosed by a coating (H) produced in a fluidized bed with the coating having a wall thickness of about 10 mum to about 200 mum. The volume of the coating (H) constitutes at least 30% of the volume of the diamond particles (D) in the fully consolidated state following individual sintering of the coated diamond particles (D, H). The abrasive cutters can be applied directly onto an abrasive tool. Further they can be processed to form composite cutters or cutting segments. In the method of forming the abrasive cutter, the diamond particle (D) is brought into a fluidized bed reactor and enclosed in a metallic coating (H). Coated diamond particle (D, H) can be processed into larger cutters or segments in each case individually sintered and fixed directly on an abrasive tool.
Owner:HILTI AG

Flexible abrasive product and method of making and using the same

The present invention provides a flexible abrasive product comprised of an open cell foam backing, a foraminous barrier coating and a shaped foraminous abrasive coating. The flexible abrasive article of the invention is made by applying a curable barrier coating over an open cell foam backing, curing the curable barrier coating to provide a foraminous barrier coating having openings therethrough corresponding to openings in the open cell foam, applying a coating composition comprising a curable binder and abrasive particles over the foraminous barrier coating, imparting a textured surface to the coating composition with a production tool which has a textured surface which is the inverse of the textured surface of the abrasive coating and to which production tool textured surface any coating composition coated over an opening of the first major surface may adhere, at least partially curing the binder, and separating the production tool from the textured surface to provide the shaped foraminous abrasive coating.
Owner:3M INNOVATIVE PROPERTIES CO

Self-aligned method for fabricating a high density GMR read element

A method is provided for fabricating a read element with leads that overlay a top surface of a sensor of the read element. The method includes forming a mask over a sensor layer, then using the mask to define the sensor from the sensor layer. The mask is then narrowed and a lead layer is formed that overlays both ends of the top surface of the sensor without covering a center portion of the top surface.
Owner:WESTERN DIGITAL TECH INC

Method for making high speed, high areal density inductive write structure

An inductive write element is disclosed for use in a magnetic data recording system. The write element provides increased data rate and data density capabilities through improved magnetic flux flow through the element. The write element includes a magnetic yoke constructed of first and second magnetic poles. The first pole includes a pedestal constructed of a high magnetic moment (high Bsat) material, which is preferably FeRhN nanocrystalline films with lamination layers of CoZrCr. The second pole includes a thin inner layer of high Bsat material (also preferably FeRhN nanocrystalline films with lamination layers of CoZrCr), the remainder being constructed of a magnetic material capable of being electroplated, such as a Ni—Fe alloy. An electrically conductive coil passes through the yoke between the first and second poles to induce a magnetic flux in the yoke when an electrical current is caused to flow through the coil. Magnetic flux in the yoke produces a fringing field at a write gap whereby a signal can be imparted onto a magnetic medium passing thereby.
Owner:WESTERN DIGITAL TECH INC

Method for providing a wrap-around shield for a magnetic recording transducer

A method for fabricating a magnetic transducer is described. The magnetic transducer includes a pole having a pole tip and a flared region. The method Includes providing a first mask layer on the pole and providing a second mask layer on the first mask layer. The first mask layer is soluble in a predetermined solution and has a first thickness. The second mask layer has a second thickness greater than the first thickness. The method also includes forming a mask from the first mask layer and the second mask layer. The step of forming the mask layer includes using the predetermined solution. The mask has a pattern that exposes a portion of the pole tip and covers a portion of the flared region. The method also includes providing a wrap-around shield on at least the pole tip.
Owner:WESTERN DIGITAL TECH INC

Method for fabricating a magnetic recording transducer

A method and system provide a magnetic transducer that includes an underlayer and a first nonmagnetic layer on the underlayer. The method and system include providing a first trench in the first nonmagnetic layer. The first trench has at least one edge corresponding to at least one side shield. The method and system also include providing a second nonmagnetic layer in the first trench and providing a second trench in the second nonmagnetic layer. The method and system include providing the main pole. At least part of the main pole resides in the second trench. The method and system further include removing at least a portion of the second nonmagnetic layer between the edge(s) and the main pole. The method and system also provide the side shield(s) in the first trench. The side shield(s) extend from at least an air-bearing surface location to not further than a coil front location.
Owner:WESTERN DIGITAL TECH INC

Method of fabricating a tunneling magnetoresistive (TMR) reader

A method of fabricating a tunneling magnetoresistance (TMR) reader is disclosed. A TMR structure comprising at least one ferromagnetic layer and at least one nonmagnetic insulating layer is provided. A first thermal annealing process on the TMR structure is performed. A reader pattern definition process performed on the TMR structure to obtain a patterned TMR reader. A second thermal annealing process is performed on the patterned TMR reader.
Owner:WESTERN DIGITAL TECH INC

Method of measuring a bevel angle in a write head

A method of measuring a bevel angle in a write pole comprises the step of providing a mask over a wafer containing the write pole. The mask has a first opening over the write pole and a second opening over a sacrificial region of the wafer. The sacrificial region comprises a same material as the write pole. The method further comprises the steps of performing a beveling operation on the write pole and the sacrificial region to form a first bevel in the write pole and a second bevel in the sacrificial region, and measuring an angle of the second bevel in the sacrificial region to determine the bevel angle of the write pole.
Owner:WESTERN DIGITAL TECH INC

Tunable pole trim processes for fabricating trapezoidal perpendicular magnetic recording (PMR) write poles

A method of forming a write pole for a magnetic recording device is provided. The method comprises providing a layer of magnetic material covered with a secondary hard mask layer and a patterned primary hard mask, milling at a first milling angle to transfer a pattern from the patterned primary hard mask to the secondary hard mask, and milling at a second milling angle to transfer the pattern from the secondary hard mask to the layer of magnetic material to form the write pole. The second milling angle is greater than the first milling angle. The method further comprises milling at a third milling angle to adjust a side wall angle of the write pole to about a desired side wall angle, and milling at a fourth milling angle to reduce a track width of the write pole to a desired track width.
Owner:WESTERN DIGITAL TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products