Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

600results about "Reversible hydrogen uptake" patented technology

Finely divided metal catalyst and method for making same

An inexpensive, highly catalytic material preferably formed by a leaching process. The catalyst comprises a finely divided metal particulate and a support. The active material may be a nickel and / or nickel nickel alloy particulate having a particle size less than about 100 Angstroms. The support may be one or more metal oxides.
Owner:CHEVRONTEXACO TECH VENTURES

Hydrogen storage material based on platelets and/or a multilayered core/shell structure

A hydrogen storage material includes a nano size material that can be formed in a multi-layered core / shell structure and / or in a nanotabular (or platelet) form.
Owner:PENNSYLVANIA STATE UNIVERSITY

Hydrogen storage and integrated fuel cell assembly

Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.
Owner:GROSS KARL J

Method for reversible storage of hydrogen and materials for hydrogen storage

Metal-N-based or metalloid-N-based materials absorb a substantial amount hydrogen and are useful as hydrogen storage materials for various applications such as hydrogen fuel cell technology.
Owner:NAT UNIV OF SINGAPORE

Nanocomposite compositions for hydrogen storage and methods for supplying hydrogen to fuel cells

A core-shell composition for gas storage, comprising a hollow or porous core and a shell comprising a nanocomposite. The nanocomposite is composed of an exfoliated layered filler dispersed in a matrix material, which provides high mechanical strength to hold a high pressure gas such as hydrogen and high resistance to gas permeation. Alternatively, the porous core may contain a plurality of cavities selected from the group consisting of shell-hollow core micro-spheres, shell-porous core micro-spheres, and combinations thereof. These core-shell compositions, each capable of containing a great amount of hydrogen gas, can be used to store and feed hydrogen to fuel cells that supply electricity to apparatus such as portable electronic devices, automobiles, and unmanned aerial vehicles where mass is a major concern. A related method of storing and releasing hydrogen gas in or out of a plurality of core-shell compositions is also disclosed.
Owner:NANOTEK INSTR GRP LLC

Ionic liquid based mixtures for gas storage and delivery

A mixture and method for the storage and delivery of at least one gas are disclosed herein. In one aspect, there is provided a mixture for the storage and delivery of at least one gas comprising: an ionic liquid comprising an anion and a cation; and at least one gas that is disposed within and is reversibly chemically reacted with the ionic liquid. In another aspect, there is provided a method for delivering at least one gas from a mixture comprising an ionic liquid and at least one gas comprising: reacting the at least one gas and the ionic liquid to provide the mixture and separating the at least one gas from the mixture wherein the at least one gas after the separating step is substantially the same as the at least one gas prior to the reacting step.
Owner:VERSUM MATERIALS US LLC

Gas storage tank and method of manufacturing the same

The technique of the invention manufactures a gas storage tank, which includes a gas absorbent / adsorbent and is capable of storing a high-pressure gas. The manufacturing process of a hydrogen storage tank first assembles a heat exchanger unit and packs the particles of hydrogen storage alloy into the heat exchanger unit. The manufacturing process then blocks hydrogen storage alloy filling holes used for packing the hydrogen storage alloy in the heat exchanger unit and attaches a detachable cover member to a hydrogen inlet. The manufacturing process subsequently locates the heat exchange unit filled with the hydrogen storage alloy in a cylindrical tank and narrows both ends of the tank to form joint openings. The manufacturing process then heat-treating the tank under water cooling and detaches the cover member. The manufacturing process attaches joint assemblies to the joint openings and forms a reinforcement layer around the outer circumference of the tank to complete the hydrogen storage tank.
Owner:TOYOTA JIDOSHA KK +1

Method of rapidly carrying out a hydrogenation of a hydrogen storage material

Disclosed is a method for rapidly carrying out a hydrogenation of a material capable of absorbing hydrogen. It was discovered that when a powder of a material capable of absorbing hydrogen is ground under a hydrogen pressure, not at room temperature but at a higher temperature (about 300° C. in the case of magnesium) and in the presence of a hydrogenation activator such as graphite and optionally a catalyst, it is possible to transform completely the powder of this material into a hydride. Such a transformation is achieved in a period of time less than 1 hour whereas the known methods call for periods of time as much as 10 times longer. This is an unexpected result which gives rise to a considerable reduction in the cost of manufacture of an hydride, particularly MgH2.
Owner:HYDRO QUEBEC CORP

Mixed hydrogen generation material

In one aspect, the invention provides a novel quaternary hydrogen storage composition having a hydrogenated state and a dehydrogenated state. Further, the present invention provides methods of storing hydrogen in a hydrogen storage composition, and methods of releasing hydrogen by reacting a nitride composition and a hydride composition.
Owner:GM GLOBAL TECH OPERATIONS LLC

Bridged graphite oxide materials

Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.
Owner:THE TRUSTEES FOR PRINCETON UNIV

Purification of carbon filaments and their use in storing hydrogen

Carbon structures, e.g. carbon nano-fibers, suitable for absorbing hydrogen at low pressures and low temperatures are produced by a selective oxidation and / or acid reflux process. The process includes heating an impure mixture containing a crystalline form of carbon in the presence of an oxidizing gas at a temperature and time sufficient to selectively oxidize and remove a substantial amount of any amorphous carbon impurities from the mixture. Metal containing impurities can be removed from the mixture by exposing the desired carbon and accompanying impurities to an acid to produce a carbon fiber that is substantially free of both non-fiber carbon impurities and metal impurities. Another aspect of the present invention includes purified carbon structures that can store hydrogen at low pressures and temperatures.
Owner:PENN STATE RES FOUND

Electrochemical generation, storage and reaction of hydrogen and oxygen

An electrolytic apparatus for using catalyst-coated hollow microspheres to produce gases, store them, and to make them available for later use. The apparatus uses catalyst-coated hollow microspheres in reversible electrochemical processes and reactions, such as those used in conjunction with water dissociation, fuel cells, and rechargeable batteries. The apparatus can be used to manufacture and store hydrogen and or oxygen and to make them available for subsequent use as raw materials for use in electrochemical and chemical reactions or as a fuel and or oxidizer for a combustion engine. The apparatus can be used as a hydrogen-oxygen hermetically seal secondary battery. The apparatus can be used as a hydrogen storage portion of certain types of secondary batteries. Hydrogen and oxygen can be stored within hollow microspheres at moderate temperature and pressure, eliminating the need for expensive storage and handling equipment, and increasing the mobility of hydrogen-powered vehicles. Storage of hydrogen and or oxygen within the microspheres significantly reduces flammability and explosion concerns and resolves many fuel cell scalability issues.
Owner:DIFFUSION SCI

Method for inducing hydrogen desorption from a metal hydride

InactiveUS6080381AEasy and efficient hydrogen desorptionDesorption is much easierAlkali/alkaline-earth/beryllium/magnesium hydridesReversible hydrogen uptakeChemical energyElectric energy
Disclosed is a method for inducing desorption of hydrogen for a metal hydride by applying thereto sufficient energy to induce hydrogen desorption by endothermic reaction. The energy that is so-applied is non-thermal and selected from the group consisting of mechanical energy, ultrasonic energy, microwave energy, electric energy, chemical energy and radiation energy.
Owner:HYDRO QUEBEC CORP

Hydrogen storage matter and manufacturing method and apparatus for the same

A hydrogen storage matter contains at least a nano-structured and organized lithium imide compound precursor complex. In the hydrogen stroge matter, the lithium imide compound precursor complex has been nano-structured and organized by mixing fine powder lithium amide with fine powder lithium hydride at a predetermined ratio to prepare a mixture as a starting material, and then processing the mixture by a predetermined complex formation processing method.
Owner:HIROSHIMA UNIVERSITY +1

Modular metal hydride hydrogen storage system

A modular metal hydride hydrogen storage unit utilizing compartmentalization to maintain a uniform metal hydride powder density thereby reducing strain on the vessel due to repeated cycling. The modular metal hydride hydrogen storage unit may be constructed using prefabricated pressure containment vessels.
Owner:VODIK LABS LLC +1

Methods for hydrogen storage using doped alanate compositions

The present invention concerns compositions, apparatus and methods for hydrogen storage. In certain embodiments, the compositions comprise sodium alanate and {n5-C5H5}2TiH2. In preferred embodiments, the components of the composition are present in specified molar ratios, for example 0.7 NaH to 1.0 Al to 0.1 Ti. In various embodiments, the hydrocarbon rings coordinating the titanium are removed from the composition, for example by melting at 182° C. or higher or by cyclic discharge and recharge of hydrogen at temperatures of 100° C. or less. Methods for producing and using the claimed compositions are also provided. In various embodiments, the alanate composition may be stored, shipped and used in a modular container, such as a cassette. Exemplary hydrogen utilizing systems and methods for ordering, distribution and shipping of cassettes are also disclosed herein.
Owner:FUELSELL TECH

Hydrogen storage tank

A hydrogen storage tank has an outer cylinder and a cylindrical hydrogen storage module within the outer cylinder spaced apart from an inner peripheral surface of the outer cylinder to provide a hydrogen passage therebetween. The cylindrical hydrogen storage module includes a lamination having a plurality of hydrogen storage units filled with powdery hydrogen absorption material and a hydrogen absorption and desorption surface on an entire outer peripheral surface, while interposing a heating / cooling element between ones of adjacent units. First and second main passages penetrate the lamination in a lamination direction of the units, and permit heating fluid and cooling fluid to flow therethrough. Sub passages branch from the main passages and extend over within each of the heating / cooling elements.
Owner:HONDA GIEKN IND

Nanoparticle mixtures for hydrogen storage, transportation, and distribution

This invention uses nanoparticle mixtures to broaden the range of economic materials, improve performance across this broader range, and thereby lower costs of hydride and other storage systems. Nanoparticles can have dramatically different mechanical, chemical, electrical, thermodynamic, and / or other properties than their parent (precursor) materials. Because of this fundamental characteristic, nanophase materials can greatly improve the range of possibilities of materials selection, performance, cost, and practicality for hydride storage systems, advancing the early commerciality of such systems for hydrogen fuel cells or other applications. Among such hydrogen storage improvements are cheaper and better-performing metals, alloys, and / or compounds; lower weight; and reduced storage volumes.
Owner:SNOW DAVID G +1

Onboard hydrogen storage unit with heat transfer system for use in a hydrogen powered vehicle

An onboard hydrogen storage unit with heat transfer system for a hydrogen powered vehicle. The system includes a hydrogen storage vessel containing a hydrogen storage alloy configured to receive a stream of hydrogen and provide hydrogen for use in powering a vehicle. During refueling a cooling / heating loop is used to remove the heat of hydride formation from the hydrogen storage alloy and during operation of the vehicle the heating / cooling loop is used to supply heat to the hydrogen storage alloy to aid in hydrogen desorption.
Owner:VODIK LABS LLC

Hydrogen storage tank and replacement method for on-off valve

The present invention provides a hydrogen storage tank (11) and a replacement method for an on-off valve, in which hydrogen occluding alloy (MH) received in a tank body (12) is prevented from being oxidized in the replacement of an on-off valve (30) connected to a hydrogen supply / discharge pipe (28) extending from the tank body (12). The hydrogen storage tank (11) has the tank body (12) in which the hydrogen occluding alloy (MH) is being received, the hydrogen supply / discharge pipe (28) to which the on-off valve (30) is connected, the on-off valve (30) being used to supply hydrogen gas to the tank body (12) and discharge hydrogen gas from the tank body (12), and a gas supply pipe (24) used to supply inert gas to the tank body (12) and provided independently of the hydrogen supply / discharge pipe (28). The method of replacing the on-off valve (30) connected to the hydrogen supply / discharge pipe (28) is such that inert gas is supplied from the gas supply pipe (24) to the tank body (12) and the on-off valve (30) is replaced in a state where the inert gas can be discharged from the supply / discharge pipe (28).
Owner:TOYOTA IND CORP +1

Hydrogen storage device and hydrogen storage system

A hydrogen storage device prevents localization of hydrogen occlusion alloy and ensures rapid discharge of hydrogen. The hydrogen storage device has a plurality of porous molded pieces arranged longitudinally at predetermined intervals. Conductive cushioning materials are inserted between the molded pieces and between the molded pieces and an adiabatic insulation material. The conductive cushioning materials include first conductive cushioning materials inserted between the adiabatic insulation material and upper and lower end surfaces of the molded pieces and second conductive cushioning materials inserted between left and right end surfaces of the adiabatic insulation material. Disposed at opposed ends of a row of the molded pieces are movable urging electrodes which can move in response to dimensional changes of the molded pieces resulting from their volume changes and which urge the molded pieces to constantly maintain physical contact between the molded pieces and lids.
Owner:TOYOTA JIDOSHA KK

Carbon-based compositions with highly efficient volumetric gas sorption

The present application is generally directed to gas storage materials such as activated carbon comprising enhanced gas adsorption properties. The gas storage materials find utility in any number of gas storage applications. Methods for making the gas storage materials are also disclosed.
Owner:GRP 14 TECH INC

Method for storing and delivering hydrogen to fuel cells

A hydrogen gas storage and supply method including: (a) providing a chamber and, contained therein, a plurality of shell-core micro-spheres, each comprising a shell and a hollow or porous core, filled with pressurized hydrogen gas at an internal pressure P; and (b) heating the micro-spheres to a temperature T to reduce the shell tensile strength σt to an extent that a tensile stress σ experienced by a shell of the micro-spheres meets the condition of σ≧ασt, causing hydrogen to diffuse out of the micro-spheres to provide hydrogen fuel from the chamber to a hydrogen-consuming device, where the material-specific parameter α has a value between 0.3 and 0.7. The shell stress scales with the internal hydrogen gas pressure and the tensile strength σt decreases with increasing micro-sphere temperature. For instance, this condition is met when the micro-spheres are heated to a temperature within the range of [Tg−25° C.] to [Tg+25° C.] for an amorphous polymer (Tg=glass transition temperature or softening point) or withing the range of [Tm−25° C.] to [Tm+10° C.] for a crystalline polymer (Tm=melting point). This method is useful for feeding hydrogen to a fuel cell used in a portable microelectronic device, automobile, and unmanned aerial vehicle where light weight is an important factor.
Owner:JANG BOR Z

Modular metal hydride hydrogen storage system

A modular metal hydride hydrogen storage unit utilizing compartmentalization to maintain a uniform metal hydride powder density thereby reducing strain on the vessel due to repeated cycling. The modular metal hydride hydrogen storage unit may be constructed using prefabricated pressure containment vessels.
Owner:VODIK LABS LLC +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products