Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1148results about "Raney catalysts" patented technology

Method for producing alcohols by hydrogenation of carbonyl compounds

A method for preparation of alcohols by catalytic hydrogenation of carbonyl compounds with hydrogen or hydrogen-containing gases in the presence of a hydrogenation catalyst of Raney type, where the catalyst is used in the form of hollow bodies, Preferred as catalytically active components are nickel, cobalt, copper, iron, platinum, palladium or ruthenium.
Owner:DEGUSSA AG

Cure catalyst, composition, electronic device and associated method

A cure catalyst is provided. The cure catalyst may include a Lewis acid and one or both of a nitrogen-containing molecule or a non-tertiary phosphine. The nitrogen-containing molecule may include a mono amine or a heterocyclic aromatic organic compound. A curable composition may include the cure catalyst. An electronic device may include the curable composition. Methods associated with the foregoing are provided also.
Owner:MOMENTIVE PERFORMANCE MATERIALS INC

Catalytic Gasification Process with Recovery of Alkali Metal from Char

Processes are described for the extraction and recovery of alkali metal from the char that results from catalytic gasification of a carbonaceous material. Among other steps, the processes of the invention include a hydrothermal leaching step in which a slurry of insoluble particulate comprising insoluble alkali metal compounds is treated with carbon dioxide and steam at elevated temperatures and pressures to effect the conversion of insoluble alkali metal compounds to soluble alkali metal compounds. Further, processes are described for the catalytic gasification of a carbonaceous material where a substantial portion of alkali metal is extracted and recovered from the char that results from the catalytic gasification process.
Owner:SURE CHAMPION INVESTMENT LTD

Catalytic Gasification Process with Recovery of Alkali Metal from Char

Processes are described for the extraction and recovery of alkali metal from the char that results from catalytic gasification of a carbonaceous material. Among other steps, the processes of the invention include a hydrothermal leaching step in which a slurry of insoluble particulate comprising insoluble alkali metal compounds is treated with carbon dioxide and steam at elevated temperatures and pressures to effect the conversion of insoluble alkali metal compounds to soluble alkali metal compounds. Further, processes are described for the catalytic gasification of a carbonaceous material where a substantial portion of alkali metal is extracted and recovered from the char that results from the catalytic gasification process.
Owner:SURE CHAMPION INVESTMENT LTD

Zero platinum group metal catalysts

The present invention pertains to catalyst systems for nitrogen oxide, carbon monoxide, hydrocarbon, and sulfur reactions that are free or substantially free of platinum group metals. The catalyst system of the present invention comprise a substrate and a washcoat, wherein the washcoat comprises at least one oxide solid, wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof. The catalyst system may optionally have an overcoat, wherein the overcoat comprises at least one oxide solid, wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof. The catalyst comprises one or more selected from the group consisting of a ZPGM transition metal catalyst, a mixed metal oxide catalyst, a zeolite catalysts, or mixtures thereof.
Owner:CATALYTIC SOLUTIONS INC

Oxide films with nanodot flux pinning centers

InactiveUS20050159298A1Increasing critical current densitySimple and versatileMaterial nanotechnologyMolecular sieve catalystsNanodotRare-earth element
A method for producing a thin film includes disposing a precursor solution onto a substrate to form a precursor film. The precursor solution contains precursor components to a rare-earth / alkaline-earth-metal / transition-metal oxide including a salt of a rare earth element, a salt of an alkaline earth metal, and a salt of a transition metal in one or more solvents, wherein at least one of the salts is a fluoride-containing salt. The precursor solution also contains an additive component comprising one or more metal compounds capable of forming a second phase nanoparticle, either alone or in combination with one or more of the precursor components of the precursor solution or a dopant component comprising one or more metal compounds capable of substituting for an element of the rare-earth / alkaline-earth-metal / transition-metal oxide, and treating the precursor film to form an intermediate metal oxyfluoride including the rare earth, the alkaline earth metal, the transition metal and the additive metal or dopant metal of the precursor solution.
Owner:AMERICAN SUPERCONDUCTOR

Method and apparatus for making uniform and ultrasmall nanoparticles

A system comprising: a plasma production chamber configured to produce a plasma; a reaction chamber vaporize a precursor material with the plasma to form a reactive mixture; a quench chamber having a frusto-conical surface and a quench region formed within the quench chamber between an ejection port of the reaction chamber and a cooled mixture outlet, wherein the quench region configured to receive the reactive mixture from the ejection port, to cool the reactive mixture to form a cooled mixture, and to supply the cooled mixture to the cooled mixture outlet; and a conditioning fluid injection ring disposed at the ejection port and configured to flow a conditioning fluid directly into the reactive mixture as the reactive mixture flows through the ejection port, thereby disturbing the flow of the reactive mixture, creating turbulence within the quench region and cooling the reactive mixture to form a cooled mixture comprising condensed nanoparticles.
Owner:SDC MATERIALS +1

Highly turbulent quench chamber

An apparatus for cooling a reactive mixture, comprising: a reactor configured to form the reactive mixture; a quench chamber comprising a frusto-conical body having a wide end, a narrow end, and a quench region formed between the wide and narrow end, wherein the quench chamber is configured to receive the reactive mixture from the plasma reactor through a reactive mixture inlet into the quench region, to receive a conditioning fluid through at least one fluid inlet, and to flow the conditioning fluid into the quench region, wherein the frusto-conical body is configured to produce a turbulent flow within the quench region with the flow of the conditioning fluid into the quench region, thereby promoting the quenching of the reactive mixture to form a cooled gas-particle mixture; and a suction generator configured to force the cooled gas-particle mixture out of the quench chamber.
Owner:UMICORE AG & CO KG +1

Pinning and affixing nano-active material

A nanoparticle comprises a nano-active material and a nano-support. In some embodiments, the nano-active material is platinum and the nano-support is alumina. Pinning and affixing the nano-active material to the nano-support is achieved by using a high temperature condensation technology. In some embodiments, the high temperature condensation technology is plasma. Typically, a quantity of platinum and a quantity of alumina are loaded into a plasma gun. When the nano-active material bonds with the nano-support, an interface between the nano-active material and the nano-support forms. The interface is a platinum alumina metallic compound, which dramatically changes an ability for the nano-active material to move around on the surface of the nano-support, providing a better bond than that of a wet catalyst. Alternatively, a quantity of carbon is also loaded into the plasma gun. When the nano-active material bonds with the nano-support, the interface formed comprises a platinum copper intermetallic compound, which provides an even stronger bond.
Owner:SDC MATERIALS +1

Skeletal iron catalyst having improved attrition resistance and product selectivity in slurry-phase synthesis processes

Particulate skeletal iron catalyst is provided which contain at least about 50 wt. % iron with the remainder being a minor portion of a suitable non-ferrous metal and having characteristics of 0.062-1.0 mm particle size, 20-100 m2 / g surface area, and 10-40 nm average pore diameter. Such skeletal iron catalysts are prepared and utilized for producing synthetic hydrocarbon products from CO and H2 feeds by Fischer-Tropsch synthesis process. Iron powder is mixed with non-ferrous powder selected from aluminum, antimony, silicon, tin or zinc powder to provide 20-80 wt. % iron content and melted together to form an iron alloy, then cooled to room temperature and pulverized to provide 0.1-10 mm iron alloy catalyst precursor particles. The iron alloy pulverized particles are treated with NaOH or KOH caustic solution at 30-95° C. temperature to extract and / or leach out most of the non-ferrous metal portion, and then screened and treated by drying and reducing with hydrogen and to provide the smaller size skeletal iron catalyst material. Such skeletal iron catalyst is utilized with CO+H2 feedstream for Fischer-Tropsch reactions in either a fixed bed or slurry bed type reactor at 180-350° C. temperature, 0.5-3.0 mPa pressure and gas hourly space velocity of 0.5-3.0 L / g Fe / hr to produce desired hydrocarbon products.
Owner:INST OF COAL CHEM ICCCHINESE ACADEMY OF SCI +1

Polycrystalline compacts including in-situ nucleated grains, earth-boring tools including such compacts, and methods of forming such compacts and tools

Polycrystalline compacts include hard polycrystalline materials comprising in situ nucleated smaller grains of hard material interspersed and inter-bonded with larger grains of hard material. The average size of the larger grains may be at least about 250 times greater than the average size of the in situ nucleated smaller grains. Methods of forming polycrystalline compacts include nucleating and catalyzing the formation of smaller grains of hard material in the presence of larger grains of hard material, and catalyzing the formation of inter-granular bonds between the grains of hard material. For example, nucleation particles may be mixed with larger diamond grains, a carbon source, and a catalyst. The mixture may be subjected to high temperature and high pressure to form in smaller diamond grains using the nucleation particles, the carbon source, and the catalyst, and to catalyze formation of diamond-to-diamond bonds between the smaller and larger diamond grains.
Owner:BAKER HUGHES INC

Finely divided metal catalyst and method for making same

An inexpensive, highly catalytic material preferably formed by a leaching process. The catalyst comprises a finely divided metal particulate and a support. The active material may be a nickel and / or nickel nickel alloy particulate having a particle size less than about 100 Angstroms. The support may be one or more metal oxides.
Owner:CHEVRONTEXACO TECH VENTURES

Advanced catalysts for automotive applications

Embodiments of present inventions are directed to an advanced catalyst. The advanced catalyst includes a honeycomb structure with an at least one nano-particle on the honeycomb structure. The advanced catalyst used in diesel engines is a two-way catalyst. The advanced catalyst used in gas engines is a three-way catalyst. In both the two-way catalyst and the three-way catalyst, the at least one nano-particle includes nano-active material and nano-support. The nano-support is typically alumina. In the two-way catalyst, the nano-active material is platinum. In the three-way catalyst, the nano-active material is platinum, palladium, rhodium, or an alloy. The alloy is of platinum, palladium, and rhodium.
Owner:UMICORE AG & CO KG +1

Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction

A system operating in an environment having an ambient pressure, the system comprising: a reactor configured to combine a plasma stream, powder particles and conditioning fluid to alter the powder particles and form a mixture stream; a supply chamber coupled to the reactor; a suction generator configured to generate a suction force at the outlet of the reactor; a fluid supply module configured to supply the conditioning fluid at an original pressure; and a pressure regulation module configured to: receive the conditioning fluid from the fluid supply module, reduce the pressure of the conditioning fluid from the original pressure to a selected pressure relative to the ambient pressure regardless of any changes in the suction force at the outlet of the reactor, and supply the conditioning fluid at the selected pressure to the supply chamber.
Owner:UMICORE AG & CO KG +1

Co-production of vinyl acetate and ethyl acetate

A method of co-producing vinyl acetate and ethyl acetate includes: (a) reacting ethylene, acetic acid and oxygen to form vinyl acetate and at least a minor amount of ethyl acetate; (b) providing a crude product stream containing the vinyl acetate and ethyl acetate of step (a) and acetic acid to a distillation tower; (c) separating the crude product stream into: (i) a vinyl acetate product stream enriched in vinyl acetate with respect to the crude product stream; (ii) an acid recycle stream enriched in acetic acid with respect to the crude product stream; (iii) a mixed sidestream containing vinyl acetate and ethyl acetate, the mixed sidestream being enriched in ethyl acetate with respect to the vinyl acetate product stream; and (d) hydrogenating vinyl acetate in the mixed sidestream to provide an ethyl acetate product stream.
Owner:CELANESE INT CORP

Advanced catalysts for fine chemical and pharmaceutical applications

A catalyst comprising a plurality of support nanoparticles and a plurality of catalytic nanoparticles. At least one catalytic nanoparticle is bonded to each support nanoparticle. The catalytic particles have a size and a concentration, wherein a first configuration of the size and the concentration of the catalytic nanoparticles enables a first catalysis result and a second configuration of the size and the concentration of the catalytic nanoparticles enables a second catalysis result, with the first and second configurations having a different size or concentration, and the first and second catalysis results being different. In some embodiments, the first catalysis result is a selective reduction of a first selected functional group without reducing one or more other functional groups, and the second catalysis result is a selective reduction of a second selected functional group without reducing one or more other functional groups.
Owner:SDC MATERIALS

Regeneration of ionic liquid catalyst using a metal in the absence of added hydrogen

A process for regenerating a used acidic ionic liquid catalyst comprising contacting the used ionic liquid catalyst with at least one metal in a regeneration zone in the absence of added hydrogen under regeneration conditions for a time sufficient to increase the activity of the ionic liquid catalyst is described. In one embodiment, regeneration is conducted in the presence of a hydrocarbon solvent.
Owner:CHEVROU USA INC

Fluid recirculation system for use in vapor phase particle production system

A method of and system for recirculating a fluid in a particle production system. A reactor produces a reactive particle-gas mixture. A quench chamber mixes a conditioning fluid with the reactive particle-gas mixture, producing a cooled particle-gas mixture that comprises a plurality of precursor material particles and an output fluid. A filter element filters the output fluid, producing a filtered output. A temperature control module controls the temperature of the filtered output, producing a temperature-controlled, filtered output. A content ratio control module modulates the content of the temperature-controlled, filtered output, thereby producing a content-controlled, temperature-controlled, filtered output. A channeling element supplies the content-controlled, temperature-controlled, filtered output to the quench chamber, wherein the content-controlled, filtered output is provided to the quench chamber as the conditioning fluid to be used in cooling the reactive particle-gas mixture.
Owner:SDC MATERIALS +1

Systems, methods, and catalysts for producing a crude product

Methods and systems for contacting of a crude feed with one or more catalysts to produce a total product that includes a crude product are described. The crude product is a liquid mixture at 25° C. and 0.101 MPa. The crude product may have a total content of alkali metal and alkaline-earth metal in metal salts of organic acids of at most 90% of the total content of alkali metal and alkaline-earth metal in metal salts of organic acids of the crude feed. One or more other properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed.
Owner:SHELL OIL CO

System for production and purification of biofuel

Systems and methods are provided for the regeneration of adsorbent medium and the production of additional fatty acid esters, i.e., biofuel, in particular, by means of discharging adsorbed contaminants from an adsorbent medium such as an inorganic catalytic medium by methods that convert the contaminants into additional biofuel or biofuel intermediates, thereby increasing production efficiency, conserving labor, and reducing material waste and environmental contamination.
Owner:BIOFUELBOX

Tunable size of nano-active material on nano-support

A method of tuning the size of an nano-active material on a nano-carrier material comprising: providing a starting portion of a carrier material and a starting portion of an active material in a first ratio; adjusting the first ratio, forming a second ratio, thereby tuning the ratio of active material and carrier material; combining the portion of the active material in a vapor phase and the portion of the carrier material in a vapor phase, forming a conglomerate in a vapor phase; and changing the phase of the conglomerate, thereby forming nano-spheres comprising a nano-carrier material decorated with a nano-active material, wherein the size of the nano-active material is dependent upon the second ratio.
Owner:SDC MATERIALS

Nano-skeletal catalyst

A method of producing a catalyst material with nano-scale structure, the method comprising: introducing a starting powder into a nano-powder production reactor, the starting powder comprising a catalyst material; the nano-powder production reactor nano-sizing the starting powder, thereby producing a nano-powder from the starting powder, the nano-powder comprising a plurality of nano-particles, each nano-particle comprising the catalyst material; and forming a catalyst precursor material from the nano-powder, wherein the catalyst precursor material is a densified bulk porous structure comprising the catalyst material, the catalyst material having a nano-scale structure.
Owner:SDC MATERIALS +1

Regeneration of ionic liquid catalyst by hydrogenation using metal and acid

A process for regenerating a used acidic ionic liquid catalyst which has been deactivated by conjunct polymers comprising combining the used catalyst, a metal and a Broensted acid which acts a source of hydrogen in a reaction zone under hydrogenation conditions for a time sufficient to hydrogenate at least a portion of the conjunct polymer is disclosed. An embodiment of a process for regenerating a used acidic ionic liquid catalyst which has been deactivated by conjunct polymers comprising the steps of combining the used ionic liquid catalyst, a metal and HCl in a reaction zone under hydrogenation conditions for a time sufficient to hydrogenate at least a portion of the conjunct polymer; removing reaction product from the reaction zone; mixing the removed reaction product with a hydrocarbon solvent in which the hydrogenated conjunct polymers are soluble; allowing the mixture to separate into two phases, a lighter phase which contains the hydrogenated conjunct polymers and a heavier phase which contains a regenerated ionic liquid catalyst; and recovering at least a portion of the heavier phase is also disclosed.
Owner:CHEVROU USA INC

Catalytic gasification process with recovery of alkali metal from char

Processes are described for the extraction and recovery of alkali metal from the char that results from catalytic gasification of a carbonaceous material. Among other steps, the processes of the invention include a hydrothermal leaching step in which a slurry of insoluble particulate comprising insoluble alkali metal compounds is treated with carbon dioxide and steam at elevated temperatures and pressures to effect the conversion of insoluble alkali metal compounds to soluble alkali metal compounds. Further, processes are described for the catalytic gasification of a carbonaceous material where a substantial portion of alkali metal is extracted and recovered from the char that results from the catalytic gasification process.
Owner:SURE CHAMPION INVESTMENT LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products