Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

185 results about "Carbon impurities" patented technology

The carbon adsorbs a wide range of impurities and contaminants, including chlorine, odors, and pigments. Other substances, like sodium, fluoride, and nitrates, are not as attracted to the carbon and are not filtered out.

Method for comprehensively recovering aluminum electrolysis waste cathode carbon blocks through ultrasonic-assisted floatation and pressure alkali leaching

ActiveCN106077038AReduce consumptionShorten the alkaline leaching timeSolid waste disposalFiltrationMaterials science
The invention relates to a method for comprehensively recovering aluminum electrolysis waste cathode carbon blocks through ultrasonic-assisted floatation and pressure alkali leaching, and belongs to the technical field of comprehensive utilization of aluminum electrolysis solid waste resources. The method comprises the steps of carrying out ultrasonic pretreatment after crushing and grinding the aluminum electrolysis waste cathode carbon blocks, carrying out floatation on pretreated powder to obtain electrolyte residues and carbon residues, and reusing the wastewater of floatation; removing carbon impurities after the electrolyte residues are subjected to microwave heating to obtain electrolyte powder with high purity, and carrying out pressure alkali leaching on the carbon residues to remove solvend so as to obtain carbon powder with high purity; adjusting the pH of alkali leaching filter liquor to generate sediment, carrying out filtration to obtain electrolyte, and reusing the filter liquor. According to the method, through collaborative assistance action among the ultrasonic pretreatment technology, the microwave heating technology and the pressure alkali leaching technology, the high-efficiency comprehensive recycling of aluminum electrolysis waste cathodes is achieved. The method for comprehensively recovering aluminum electrolysis waste cathode carbon blocks through ultrasonic-assisted floatation and pressure alkali leaching is reasonable in technological design, high in recovery rate of valuable matter, purity of obtained products and processing speed, free of secondary pollutants and applicable to industrial large-scale application.
Owner:CENT SOUTH UNIV

Chemical vapor deposition process for depositing titanium nitride films from an organometallic compound

A process for depositing titanium nitride films containing less than 5% carbon impurities and less than 10% oxygen impurities by weight via chemical vapor deposition is disclosed. Sheet resistance of the deposited films is generally be within a range of about 1 to 10 ohms per square. The deposition process takes place in a deposition chamber that has been evacuated to less than atmospheric pressure and utilizes the organometallic compound tertiary-butyltris-dimethylamido-titanium and a nitrogen source as precursors. The deposition temperature, which is dependent on the nitrogen source, is within a range of 350° C. to 700° C. The low end of the temperature range utilizes nitrogen-containing gases such as diatomic nitrogen, ammonia, hydrazine, amides and amines which have been converted to a plasma. The higher end of the temperature range relies on thermal decomposition of the nitrogen source for the production of reaction-sustaining radicals. In such a case, the use of diatomic nitrogen gas is precluded because of its high dissociation temperature. Other materials may be simultaneously incorporated in the titanium nitride films during either embodiment of the deposition process as heretofore described. For example, a titanium nitride film incorporating aluminum and having the general formula TiAIN may be deposited by introducing aluminum-containing compounds. Additionally, a titanium nitride film incorporating tungsten and having the general formula TiNW may be deposited by introducing tungsten-containing compounds.
Owner:MICRON TECH INC

Method for manufacturing high-resistance GaN thin film

The invention discloses a high-resistance GaN thin film and a method for manufacturing the high-resistance GaN thin film. The high-resistance GaN thin film comprises a substrate, a GaN low-temperature nucleating layer and a GaN high-resistance layer, wherein the GaN low-temperature nucleating layer is manufactured on the substrate, and the GaN high-resistance layer is manufactured on the GaN low-temperature nucleating layer. The high-resistance GaN thin film grows through MOCVD equipment, with trimethyl gallium and ammonia gas used as a gallium source and a nitrogen source, and with hydrogen used as carrier gas; the growth temperature of the GaN low-temperature nucleating layer is 550 DEG C, the pressure of a reaction chamber for the GaN low-temperature nucleating layer is 200 Torr, and the thickness of the GaN low-temperature nucleating layer ranges from 0.2 micrometer to 0.3 micrometer; the growth temperature of the GaN high-resistance layer is 1040 DEG C, the pressure of a reaction chamber for the GaN high-resistance layer is 50 Torr, and the thickness of the GaN high-resistance layer is 2 micrometers. According to the high-resistance GaN thin film, by controlling the pressure of the reaction chambers in the material growth process and controlling merging of carbon atoms in reaction precursors TMGa, carbon impurities are imported to acquire acceptor levels under the condition that a carbon source is not independently added, and background carrier concentration is compensated for.
Owner:INST OF SEMICONDUCTORS - CHINESE ACAD OF SCI

Device and method for adsorbing and removing methyl chlorosilane impurities to prepare high-purity trichlorosilane

The invention relates to a device and a method for adsorbing and removing methyl chlorosilane impurities to prepare high-purity trichlorosilane. According to molecule size difference of different methyl chlorosilane monomers, an adsorbent with an oriented adsorption function is prepared; three adsorption columns are respectively filled with a pretreatment adsorbent and the oriented adsorbent; trichlorosilane which is rectified and purified in a multilevel mode is utilized as a raw material, a designed multilevel adsorption device is utilized to perform oriented adsorption, the content of carbon impurities in the adsorbed trichlorosilane is greatly reduced, and electronic-grade polycrystalline silicon production can be realized. Meanwhile, as the adsorption columns are filled with the adsorbent which can perform oriented adsorption on the trichlorosilane, dimethyl chlorosilane and methyl dichlorosilane can be selectively adsorbed in an adsorption process; thus, the dimethyl chlorosilaneand the methyl dichlorosilane can be effectively separated, the dimethyl chlorosilane and the methyl dichlorosilane can be respectively utilized as organosilicone products to be directly recycled after being desorbed, aftertreatment technologies are reduced, energy consumption is saved, and economic benefits are improved.
Owner:TIANJIN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Method for recycling waste silicon solution

InactiveCN101683981AMeet the requirements of power generationMeet the indicator requirementsSiliconDownstream processingFiltration
The invention relates to a method for recycling a waste silicon solution, in particular to a method for recycling a waste silicon solution generated in cutting silicon chip sheets. The method is characterized by comprising the following steps: carrying out centrifugal separation on the waste silicon solution generated in cutting silicon bars by filter cloth with the pore diameter of 800-1,500 meshes, and then obtaining silicon powder; putting the silicon powder obtained after separation in a reaction kettle; adding a strong oxidizer to react, and then filtering the reaction solution so as to remove organic carbon impurities, wherein the strong oxidizer is one of concentrated sulfuric acid, hydrogen peroxide and nitric acid or a mixed solution prepared from concentrated sulfuric acid, hydrogen peroxide and nitric acid; putting the silicon powder obtained after secondary filtration in the reaction kettle; adding diluted aqua fortis to react, and then filtering and drying the reaction solution so as to remove metal and metal oxide impurities; and putting the silicon powder obtained after third filtration in a Czochralski single crystal furnace; sufficiently reacting in the single crystal furnace in vacuum at the temperature of 800-1,000 DEG C so as to remove surface impurities, then cooling, and finally obtaining solar-grade silicon sheets. Applying the method can recycle most silicon powder in the waste silicon solution, and the silicon powder can be used for manufacturing solar batteries by downstream processing, thereby not only saving resources, but also not generating environmental pollution.
Owner:ZHEJIANG YUHUI SOLAR ENERGY SOURCE

Coal-series kaolin gas suspension calcination method

The invention discloses a coal-series kaolin gas suspension calcination method comprising the following steps of: firstly, crushing and grinding mineral raw materials of coal-series kaolin, feeding the mineral raw materials into a spray drying tower for dehydration, and feeding the materials subjected to spray drying into a furnace external heat exchange decomposition system for treatment; feeding the treated materials into a gas suspension calciner for rapid calcination in an intensive fluidization condition, wherein the fluidizing velocity is 8-40m/s, and the calcination temperature is controlled within 600-1400 DEG C according to the requirements of products; carrying out gas-solid separation on the rapidly calcined materials under the action of whirlwind, then, controlling the proportions of materials returned to the gas suspension calciner through a loop seal, and adjusting the total standing time of the materials in the gas suspension calciner to control the calcination quality of a product; and further carrying out whitening treatment on the calcined materials through a furnace-external reburning heat exchange system, and then, feeding the materials into a product cabin. The method is simple in process, high in heat efficiency, good gas-solid heat and mass transfer and narrow in calcination temperature fluctuation range; and the product is stable and uniform in quality, smoke waste heat can be sufficiently utilized, high handling capacity is realized, and carbon impurities and structural water in the coal-series kaolin can be rapidly removed.
Owner:BEIJING GENERAL RES INST OF MINING & METALLURGY

Nickel-based methanation catalyst promoted by in-situ grew carbon nano tube and preparation method for nickel-based methanation catalyst

The invention discloses a nickel-based methanation catalyst promoted by an in-situ grew carbon nano tube and a preparation method for the nickel-based methanation catalyst and relates to a methanation catalyst. The catalyst comprises a main component and a promoter, wherein the main component comprises Ni and Mg; the promoter is the carbon nano tube and is represented by Ni/MgO-CNTs. The preparation method comprises the steps of mixing Ni(NO3)2*6H2O and Mg(NO3)2*6H2O, and dissolving the mixture in water to prepare a solution A, dissolving NaOH and NaHCO3 in water to prepare a solution B; adding the solution A and the solution B into a reaction container for reaction, aging and filtering precipitation liquid, washing until the filtrate is neutralized, drying and roasting to obtain an Ni/MgO catalyst precursor, then performing tabletting and screening, performing mixed dilution through quartz sand, putting the precursor in a rector, heating to 873K, reducing the precursor to obtain an Ni/MgO catalyst in a reduced state, converting gas flow into CO gas reaction, growing the carbon nano tube in situ, cooling to 823K to remove carbon impurities, and cooling to 473K to obtain a product.
Owner:XIAMEN UNIV

Thermal field for aluminum nitride crystal growth furnace

The invention discloses a thermal field for an aluminum nitride crystal growth furnace. The growth furnace comprises a furnace body and a support rod penetrating through the lower part of the furnacebody, the thermal field comprises a crucible arranged above the support rod, a thermal insulation mechanism as well as multistage heating mechanisms sequentially distributed in the vertical directionin the furnace body and used for heating the crucible, and the thermal insulation mechanism comprises a first thermal insulation screen, a second thermal insulation screen arranged between the crucible and the support rod, a third thermal insulation screen arranged on the outer side of the crucible in a surrounding manner as well as a fourth thermal insulating screen arranged between the third thermal insulation screen and the inner wall of the furnace body in a surrounding manner. The thermal field for the aluminum nitride crystal growth furnace is made of tungsten and boron nitride materials, so that impurity effects of oxygen and carbon impurities in the graphite thermal field on crystal growth are effectively prevented; the temperatures of the top end and the bottom end of the cruciblecan be flexibly regulated by the aid of the multistage heating mechanisms; by means of the movable support rod, the temperature gradient for crystal growth can be controlled conveniently, the crucible can be taken out conveniently, and thus, a furnace chamber can be cleaned.
Owner:SUZHOU AOQU OPTOELECTRONICS TECH CO LTD

Method for separating lead from carbon and copper in copper-lead-zinc mixed sulfide ore

The invention discloses a method for separating lead from carbon and copper in copper-lead-zinc mixed sulfide ore. The method comprises the steps of (1) carrying out rough concentration and grinding on the copper-lead-zinc mixed sulfide ore to obtain rough concentrate; (2) regrinding the rough concentrate to obtain ore pulp; (3) sequentially adding modified calcium lignosulphonate, water glass, zinc sulfate, sodium sulfite and sodium cyanide to ore pulp to separate lead from carbon-copper-zinc sulfide; (4) carrying out concentration on the floating product after separation in a concentration tank to obtain lead concentrate; (5) adding a foaming agent to the product in a tank after separation to float the floating product; and (6) adding copper sulfate to the product in the tank for activating, then adding a collector for floating the copper mineral, and carrying out concentration to obtain the copper concentrate. As the method is adopted, the lead grade of the obtained lead concentrate reaches more than 59%, the lead recovery rate reaches about 71-73%, the copper grade of the obtained copper concentrate reaches about 15%, the copper recovery rate reaches about 48-53%, the lead loss rate in carbon impurity is reduced to 1-2% from about 5-8%, and the separating effect is remarkable.
Owner:西安西北有色地质研究院有限公司

Low-electrical-resistivity p-type aluminum gallium nitrogen material and preparation method thereof

The invention discloses a low-electrical-resistivity p-type aluminum gallium nitrogen material and a preparation method thereof. The preparation method includes the following steps: raising the temperature of a substrate and carrying out heat treatment under a hydrogen environment and removing impurities of the surface of the substrate; growing a low-temperature nucleating layer on the substrate and providing a nucleating center for follow-up growth materials; growing a layer of unintentionally doped template layer on the low-temperature nucleating layer; epitaxially growing a layer of low-carbon-impurity-concentration P-type aluminum gallium nitrogen layer on the unintentionally doped template layer in a low-temperature; and under a nitrogen environment, carrying out high-temperature annealing so as to make an acceptor in the P-type aluminum gallium nitrogen layer activated and thus the low-electrical-resistivity p-type aluminum gallium nitrogen material is obtained. When the preparation method is changed, through change of the growth conditions, the concentration of unintentionally doped carbon impurities in the low-temperature-growth P-type aluminum gallium nitrogen material is reduced so that the compensation action of the acceptor is reduced and an objective of reducing the electrical resistivity of the P-type aluminum gallium nitrogen material is achieved.
Owner:INST OF SEMICONDUCTORS - CHINESE ACAD OF SCI

Method for manufacturing semiconductor device layer

The invention discloses a method for manufacturing a semiconductor device layer. The method comprises the following steps of: after a well is formed on a substrate of a semiconductor device, forming an isolation shallow trench, and forming a grid on the substrate of the semiconductor device; performing ion implantation of carbon impurity on the grid and the substrate of the semiconductor device; after the surface of the grid and the surface of the substrate of the semiconductor device are re-oxidized, performing light dope on the grid and the substrate of the semiconductor device to form a shallow junction on the substrate of the semiconductor device; forming a nitrogen oxide side wall of the grid, doping the grid and the substrate of the semiconductor device, and performing deposition on the semiconductor device to form a drain and a source; and depositing metals on the surface of the grid and the semiconductor substrate by adopting a self-alignment silicide method to form metalized silicon layers, then performing quick annealing treatment, and etching the un-reacted metals. The method can effectively reduce the transient enhanced diffusion (TED) generated in the re-oxidation process of the grid so as to remarkably prevent the short trench of the semiconductor device from generating short channel effect (SCE) and reverse short channel effect (RSCE).
Owner:SEMICON MFG INT (SHANGHAI) CORP

HFCVD batch preparation method of complex-shaped diamond-coated cutter

The invention discloses an HFCVD batch preparation method of a complex-shaped diamond film coated cutter. A handle of the complex-shaped cutter after being pretreated is inserted into a cutter coolingbase to be placed on the water-cooled workbench of HFCVD equipment. The cutter cooling base is formed by optimally matching a molybdenum sheet layer, a graphitic layer, a red copper layer or a stainless steel layer, and a drill hole matched with the handle in diameter and length is formed in the cutter cooling base. The HFCVD equipment adopts a single-layer hot filament. In the cutter mounting and film growing processes, the HFCVD equipment can realize free lifting of the cutter cooling base by controlling the lifting of the water-cooled workbench. Hydrogen, a carbon source and a doped sourceenter into the surface of the complex-shaped cutter to deposit a single-layer or composite diamond film. The HFCVD batch preparation method can conveniently and effectively control the temperature value of the blade area of the cutter, ensures the uniform distribution of a temperature field and a density field of a reactive group, ensures the uniform deposition of the diamond film, and avoids ofdepositing carbon impurities on the handle position to cause the phenomenon of a black bar.
Owner:SHANGHAI JIAO TONG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products