High-strength hot-rolled steel sheet and method for producing the same (as amended)
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Examples
first embodiment
[0049]The reason for limiting the compositions of a high-strength hot-rolled steel sheet according to a first embodiment will be described below. Unless otherwise specified, “%” refers to “% by mass”. The term “high-strength” in the embodiment refers to a tensile strength TS of 900 MPa or more.
C: More than 0.07% and 0.2% or Less
[0050]C is an element that effectively contributes to increase the strength of steel sheets and is a useful element that promotes bainite transformation and contributes to the formation of a bainite phase. An adequate C content results in increased carbide in bainite lath grains and improved punchability in mass production. These effects require a C content of more than 0.07%. An excessive C content of more than 0.2% results in poor workability and weldability. Thus, the C content is limited to more than 0.07% and 0.2% or less, preferably 0.079% or more, more preferably 0.10% or more, and preferably 0.19% or less.
Si: 2.0% or Less
[0051]Si is an element that in...
example 1
[0091]A steel slab having a composition listed in Table 1 was subjected to heating, finish rolling, and cooling after rolling listed in Table 2 to produce a hot-rolled steel sheet. In continuous casting, hot-rolled steel sheets other than a hot-rolled steel sheet No. 1′ of steel Al in Tables 1 to 3 described below were subjected to an electro-magnetic stirrer (EMS) to reduce segregation of components of the steel. Table 1 also lists the Ar3 transformation temperature of each steel slab determined from a thermal expansion curve. After pickling, some of the hot-rolled steel sheets were passed through a continuous hot-dip galvanizing line and were subjected to annealing treatment under the conditions listed in Table 2 and hot-dip galvanizing treatment to produce hot-dip galvanized steel sheets (GI). In the hot-dip galvanizing treatment, each of the hot-rolled steel sheets subjected to the annealing treatment was immersed in a galvanizing bath (0.1% by mass Al—Zn) at 480° C., and 45 g / m...
second embodiment
[0101]The reason for limiting the compositions of a high-strength hot-rolled steel sheet according to a second embodiment will be described below. Unless otherwise specified, “%” refers to “% by mass”. The term “high-strength” in the second embodiment refers to a tensile strength TS in the range of 700 to 900 MPa.
C: 0.05% to 0.15%
[0102]C is an element that effectively contributes to increase the strength of steel sheets and is a useful element that promotes bainite transformation and contributes to the formation of a bainite phase. An adequate C content results in increased carbide in bainite lath grains and improved punchability in mass production. These effects require a C content of 0.05% or more. An excessive C content of more than 0.15% results in poor workability and weldability. Thus, the C content is limited to the range of 0.05% to 0.15%, preferably 0.071% or more, more preferably 0.080% or more, and 0.14% or less.
Si: 1.5% or Less
[0103]Si is an element that increases the st...
PUM
Property | Measurement | Unit |
---|---|---|
Temperature | aaaaa | aaaaa |
Temperature | aaaaa | aaaaa |
Temperature | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com