Compositions and Methods for Treating and Preventing Pancreatitis, Renal Injury and Cancer

a technology of renal injury and compositions, applied in the field of compositions and methods for treating and preventing pancreatitis, renal injury and cancer, can solve the problems of increasing morbidity and mortality, worsening severity, and increasing the activity of ckd, so as to reduce the the level of activity of a renalase receptor

Inactive Publication Date: 2017-04-20
YALE UNIV
View PDF3 Cites 2 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0012]In one embodiment, the invention is a method of treating or preventing a renal disease or disorder in a subject in need thereof, by administering to the subject a therapeutically effective amount of a composition comprising at least one PMCA4b activator. In various embodiments, the PMCA4b activator is a chemical compound, a protein, a peptide, a peptidomemetic, an antibody, a small molecule chemical compound, or a combination thereof. In one embodiment, the PMCA4b activator is a renalase polypeptide, or a fragment or conjugate or analogue or homolog thereof. In one embodiment, the renalase polypeptide comprises the amino acid sequence of SEQ ID NO: 8, or a fragment or conjugate or analogue or homolog thereof. In another embodiment, the renalase polypeptide comprises the amino acid sequence of SEQ ID
[0013]NO: 9, or a fragment or conjugate or analogue or homolog thereof. In another embodiment, the PMCA4b activator is a renalase polypeptide fragment. In one embodiment, the renalase polypeptide fragment comprises the amino acid sequence of SEQ ID NO: 3, or a fragment or conjugate or analogue or homolog thereof. In another embodiment, the renalase polypeptide fragment comprises the amino acid sequence of SEQ ID NO: 4, or a fragment or conjugate or analogue or homolog thereof. In one embodiment, the renalase polypeptide fragment comprises the amino acid sequence of SEQ ID NO: 5, or a fragment or conjugate or analogue or homolog thereof. In some embodiments, the at least one PMCA4b activator is administered one time. In some embodiments, the at least one PMCA4b activator is administered repeatedly. In some embodiments, the at least one PMCA4b activator is administered locally, regionally or systemically. In various embodiments, the PMCA4b activator is an activator of PMCA4b expression, an activator of PMCA4b activity, or a combination thereof. In various embodiments, the renal disease or disorder that is treated or prevented is selected from the group consisting of acute kidney injury (AKI), chronic kidney disease (CKD), renal ischemic injury, renal reperfusion injury, renal ischemic-reperfusion injury, toxic renal injury, renal tubular necrosis, renal tubular inflammation, renal tubular apoptosis, hypertension, and any combination thereof. In one embodiment, the subject is human.
[0014]In another embodiment, the invention is a method of treating or preventing cancer in a subject in need thereof, by administering to the subject a therapeutically effective amount of a composition comprising at least one PMCA4b inhibitor. In various embodiments, the PMCA4b inhibitor is a chemical compound, a protein, a peptide, a peptidomemetic, an antibody, a ribozyme, a small molecule chemical compound, an antisense nucleic acid molecule, or any combination thereof. In one embodiment, the PMCA4b inhibitor is caloxin 1b, or analogue or homolog thereof. In another embodiment, the PMCA4b inhibitor is cisplatin, or analogue or homolog thereof. In various embodiments, the cancer that is treated or prevented is selected from the group consisting of brain cancer, bladder cancer, breast cancer, cervical cancer, colorectal cancer, liver cancer, kidney cancer, lymphoma, leukemia, lung cancer, melanoma, metastatic melanoma, mesothelioma, neuroblastoma, ovarian cancer, prostate cancer, pancreatic cancer, renal cancer, skin cancer, thymoma, sarcoma, non-Hodgkin's lymphoma, Hodgkin's lymphoma, uterine cancer, or any combination thereof. In one embodiment, the subject is human.
[0015]In one embodiment, the invention is a method of treating or preventing a pancreatic disease or disorder in a subject in need thereof, by administering to the subject a therapeutically effective amount of a composition comprising at least one agent, wherein the at least one agent is at least one selected from the group consisting of a renalase polypeptide, a renalase polypeptide fragment, and an activator of renalase, or a fragment or conjugate or analogue or homolog thereof. In one embodiment, the renalase polypeptide is a recombinant renalase polypeptide, or a fragment or conjugate or analogue or homolog thereof. In another embodiment, the renalase polypeptide comprises the amino acid sequence of SEQ ID NO: 8, or a fragment or conjugate or analogue or homolog thereof. In one embodiment, the renalase polypeptide comprises the amino acid sequence of SEQ ID NO: 9, or a fragment or conjugate or analogue or homolog thereof. In another embodiment, the ren

Problems solved by technology

Renal injury can lead to chronic kidney disease (CKD), which is associated with increased morbidity and mortality, is largely due to cardiovascula

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Compositions and Methods for Treating and Preventing Pancreatitis, Renal Injury and Cancer
  • Compositions and Methods for Treating and Preventing Pancreatitis, Renal Injury and Cancer
  • Compositions and Methods for Treating and Preventing Pancreatitis, Renal Injury and Cancer

Examples

Experimental program
Comparison scheme
Effect test

experimental examples

[0227]The invention is further described in detail by reference to the following experimental examples. These examples are provided for purposes of illustration only, and are not intended to be limiting unless otherwise specified. Thus, the invention should in no way be construed as being limited to the following examples, but rather, should be construed to encompass any and all variations which become evident as a result of the teaching provided herein.

[0228]Without further description, it is believed that one of ordinary skill in the art can, using the preceding description and the following illustrative examples, make and utilize the present invention and practice the claimed methods. The following working examples therefore, specifically point out the preferred embodiments of the present invention, and are not to be construed as limiting in any way the remainder of the disclosure.

example 1

Identification of a Receptor for Extracellular Renalase

[0229]The results described herein identify PMCA4b as a renalase receptor, and a key mediator of renalase dependent MAPK signaling. Using biotin transfer studies with RP-220 in the human proximal tubular cell line HK-2 and protein identification by mass spectrometry, PMCA4b was identified as a renalase binding protein. This previously characterized plasma membrane ATPase is involved in cell signaling and cardiac hypertrophy. Co-immunoprecipitation and co-immunolocalization confirmed protein-protein interaction between endogenous renalase and PMCA4b. Down-regulation of endogenous PMCA4b expression by siRNA transfection, or inhibition of its enzymatic activity by the specific peptide inhibitor caloxin1b each abrogated RP-220 dependent MAPK signaling and cytoprotection. In control studies, these maneuvers had no effect on epidermal growth factor mediated signaling, confirming specificity of the interaction between PMCA4b and renala...

example 2

Modulation of the Activity of PMCA4b Mediates Renalase's Cytoprotective Action

[0253]The effect of renalase on the ATPase activity of PMCA4b is examined, including its effect on Vmax, Km, and constitutive activation. The local and / or global effect of renalase's interaction with PMCA4b on calcium dynamics is also examined. Whether the disruption of the PMCA4b macromolecular complex with RAS SF-1 modulates the action of renalase (MAPK signaling and cytoprotection) is further examined. Whether PMCA4b knockout mice respond differently than wild type mice to renal ischemia or exposure to cisplatin is examined, as is whether renalase modifies the extent of renal injury.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Timeaaaaaaaaaa
Levelaaaaaaaaaa
Login to view more

Abstract

The present invention includes compositions and methods for detecting, treating and preventing renal and pancreatic diseases and disorders.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS[0001]The present application claims priority to U.S. Provisional Application No. 61 / 994,279, filed May 16, 2014, which is hereby incorporated by reference in its entirety herein.STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT[0002]This invention was made with government support under grants RC1DK086465, RC1DK086402 and R01DK081037, awarded by the National Institutes of Health. The government has certain rights in the invention.BACKGROUND OF THE INVENTION[0003]Renalase (also designated RNLS and gene C10orf59) is a novel secretory flavoprotein oxidase (Farzaneh-Far et al., 2010, PLoS One 5:e13496; Desir et al., 2012, J. Am. Heart Assoc. 1:e002634; Desir et al., 2012, 6:417-426; J. Am. Soc. Hypertension; Xu et al., 2005, J. Clin. Invest. 115:1275-1280; Li et al., 2008, Circulation 117:1277-1282). Single nucleotide polymorphisms present in the gene are associated with hypertension, cardiac disease and diabetes (Farzaneh-Far et al.,...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): C12N9/02C12Q1/26
CPCC12N9/0036C12Y106/03G01N2333/90209A61K38/00G01N2800/06C12Q1/26C12N15/1137C12Y306/03008C12N2310/14A61P1/18A61P13/12A61P35/00A61P35/02A61P35/04A61P37/04A61P9/12
Inventor DESIR, GARY
Owner YALE UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products