Polyhydroxyalkanoate production methods and materials and microorganisms used in same

Inactive Publication Date: 2020-11-05
NEWLIGHT TECH
View PDF0 Cites 4 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

Unfortunately, despite these maximized efficiency advantages, sugar-based PHA production remains more expensive than fossil fuel-based plastics production.
Thus, given the apparent efficiency maximization of the high density sugar-derived PHA production process, PHAs are generally considered to be unable to compete with fossil fuel-based plastics on energy, chemical, and cost efficiency.
Despite the environmental advantages of PHAs, the high cost of PHA production relative to the low cost of fossil fuel-based plastics production has significantly limited the industrial production and commercial adoption of PHAs.
Unfortunately, the fermentation or biotechnological conversion of carbon-containing gases into PHAs presents technical challenges and stoichiometric limitations that have, in the past, rendered the gas-to-PHA production process significantly more energy and chemical intensive, and thus more costly, than the food crop-based PHA production process.
These technic

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Polyhydroxyalkanoate production methods and materials and microorganisms used in same

Examples

Experimental program
Comparison scheme
Effect test

Example

Example 1

[0296]A fermentation system comprising one or more vessels are partially filled with one or more liquid growth mediums, wherein the medium comprises methanotrophic, autotrophic, methanotrophic, and / or other heterotrophic or biomass-utilizing microorganisms containing PHA, and, per liter of water, 0.7-1.5 g KH2PO4, 0.7-1.5 g K2HPO4, 0.7-1.5 g KNO3, 0.7-1.5 g NaCl, 0.1-0.3 g MgSO4, 24-28 mg CaCl2*2H2O, 5.0-5.4 mg EDTA Na4(H2O)2, 1.3-1.7 mg FeCl2*4H2O, 0.10-0.14 mg CoCl2*6H2O, 0.08-1.12 mg MnCl2*2H2O, 0.06-0.08 mg ZnCl2, 0.05-0.07 mg H3BO3, 0.023-0.027 mg NiCl2*6H2O, 0.023-0.027 mg NaMoO4*2H2O, 0.011-0.019 mg CuCl2*2H2O. One or more of the mediums are anaerobic and / or aerobic, and carbon containing gases, including methane, carbon dioxide, and volatile organic compounds, as well as optionally air or oxygen, are fed into all or part of the system to induce the growth and reproduction of microorganisms through the utilization of carbon-containing gases, as well as the production...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Molar densityaaaaaaaaaa
Molar densityaaaaaaaaaa
Compositionaaaaaaaaaa
Login to view more

Abstract

Embodiments of the invention relate generally to methods to generate microorganisms and/or microorganism cultures that exhibit the ability to produce polyhydroxyalkanoates (PHA) from carbon sources at high efficiencies. In several embodiments, preferential expression of, or preferential growth of microorganisms utilizing certain metabolic pathways, enables the high efficiency PHA production from carbon-containing gases or materials. Several embodiments relate to the microorganism cultures, and/or microorganisms isolated therefrom.

Description

RELATED CASES[0001]This application is a continuation-in-part of co-pending U.S. application Ser. No. 16 / 577,373, filed Sep. 20, 2019, which is a continuation of co-pending U.S. application Ser. No. 15 / 643,905, filed Jul. 7, 2017 (now issued as U.S. Pat. No. 10,450,592), which is a continuation of U.S. application Ser. No. 14 / 740,056, filed Jun. 15, 2015 (now issued as U.S. Pat. No. 9,725,744), which is a continuation of U.S. application Ser. No. 13 / 802,622, filed Mar. 13, 2013 (now issued as U.S. Pat. No. 9,085,784), which claims the benefit of U.S. Provisional Application No. 61 / 617,534, filed on Mar. 29, 2012 the entire disclosure of each of which is incorporated in its entirety by reference herein.BACKGROUNDField of the Invention[0002]Embodiments of the invention relate to an improved process for the production, processing, and functional modification of polyhydroxyalkanoates (PHAs), and specifically to processes for the production, processing, and functional modification of PHA...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): C12P7/62
CPCC12P7/625C12N9/0073C12Y114/13025C12N1/38C12N1/20C12P39/00C12N15/52Y02E50/30
Inventor HERREMA, MARKUS D.
Owner NEWLIGHT TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products