Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Guidewire for a free standing intervascular device having an integral stop mechanism

Inactive Publication Date: 2005-09-06
WL GORE & ASSOC INC
View PDF123 Cites 331 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0013]It is an object of the present invention to provide a novel and improved guidewire for confidently positioning a free standing filter for expansion within a blood vessel to capture dislodged embolic material.
[0014]Another object of the present invention is to provide a novel and improved guidewire for confidently positioning a free standing filter for use during a procedure to treat blood vessel stenosis or occlusion which does not cause filter movement which results in trauma to the luminal wall during guidewire, balloon and stent exchanges and which can be associated with the filter in a manner to facilitate longitudinal movement of the guidewire relative to the filter while precluding filter migration.
[0015]A further object of the present invention is to provide a novel and improved guidewire for positioning a free standing filter for use during a procedure to treat blood vessel stenosis or occlusion which is formed to facilitate intra-procedural guidewire exchanges and which reduces concern for the disassociation of the filter from the guidewire during normal procedures.
[0017]A still further object of the present invention is to provide a novel and improved guidewire for association with the positioning of ECRD including a stop mechanism in the area of a distal end thereof to expand or extend and collapse or retract on actuation thereby forming a mechanical stop preventing the guidewire from being inadvertently removed from the ECRD.
[0018]These and other objects of the present invention are accomplished by providing an elongated guidewire having a stop mechanism thereon which is receivable in a receiving member extending centrally through an intervascular device provided with an open ended channel which may be configured to receive a plurality of different sized guidewires. The guidewire stop mechanism is positioned in the area of a distal end of the guidewire and may be selectively expanded or extended and collapsed or retracted to permit selective association with the intervascular device. When positioned through the receiving member of the intervascular device, the stop mechanism can be expanded or extended to prevent the loss of the device while still permitting the guidewire to move longitudinally with respect to the device. The stop mechanism may take on numerous configurations namely that of a balloon, a grappling hook, a buckled tube, a braided structure, barbs, biased bosses or any mechanism which is remotely expandable or extendable and collapsible or retractable from a guidewire. In the retracted position, the stop member should pass freely through the receiving member of the intervascular device, but in the expanded position, the stop member should be radially spaced from the inner wall of a blood vessel while precluding migration of the intervascular device over the distal end of the guidewire.

Problems solved by technology

Balloon angioplasty or similar transluminal treatments have become common for some blood vessel lesions, but for all such procedures, plaque and emboli dislodged during the procedure are free to flow within the lumen of the vessel and possibly cause substantial injury to a patient.
This procedure requires complete vessel occlusion cutting off all blood flow which imposes severe time constraints on the procedure.
Additionally, the balloons involved in the procedure are affixed to elongate guidewires or small elongate catheters which extend for a substantial distance through blood vessels to the location of the stenosis or occlusion, and it is practically impossible to prevent some back and forth longitudinal motion of these elongate elements within a vessel during a procedure.
Angioplasty is often not a preferred treatment for lesions in the carotid artery because dislodged plaque can enter arterial vessels of the brain causing brain damage or even death.
As indicated by U.S. Pat. No. 5,879,367 to Kaganov et al., carotid endarterectomy is a surgical procedure used to remove a lesion in the carotid artery, but this procedure also involves substantial risk of dislodged embolic material.
First, since the elongate catheter or guidewire to which the filter is attached is used to guide over the wire devices during a subsequent procedure, it is extremely difficult if not impossible to prevent longitudinal movement of the wire or catheter after the filter has been deployed.
This causes the filter to move back and forth within the vessel with resultant abrasion by the filter of the vessel wall, and such abrasion not only causes trauma to the vessel wall but also operates to dislodge debris which is free to flow distally of the filter.
Thus filter movement after the filter is deployed somewhat defeats the purpose of the filter.
Also, it is often desirable during a procedure to exchange guidewires, and such an exchange is not possible with an attached filter.
Additionally, the retrieval of known distal filters while retaining captured embolic material has proven to be problematic.
These pleats snag on the withdrawal of the catheter making retrieval of the filter difficult and often causing the filter to spill captured embolic material.
Recently, it has become of concern that if the guidewire is made to be displaceable with respect to a filter or other intervascular device, there is the possibility that the device could become disassociated with the guidewire and consequently could migrate and become lost within the vessel.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Guidewire for a free standing intervascular device having an integral stop mechanism
  • Guidewire for a free standing intervascular device having an integral stop mechanism
  • Guidewire for a free standing intervascular device having an integral stop mechanism

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0027]Referring to FIG. 1, a free standing filter 10 which is suitable for accommodating the guidewire 12 in accordance with the present invention is formed around a central tube 11 defining an open ended channel which forms the longitudinal axis for the filter 10 and which slidingly receives the guidewire 12. The frame of the filter is formed by a stent 14 which may be collapsed inwardly toward the tube 11 and which expands outwardly away from the tube to the substantially cylindrical open ended configuration shown in the drawings. Ideally, this stent is formed of thermal shape memory material and is of the type shown by U.S. Pat. No. 5,540,712, although other expandable stents can be used. The stent 14 is coupled at one end to the central tube 11 by elongate lead wires 16 which extend between an open proximal end 18 of the stent and a spaced coupling 20 which is secured to the central tube 11. It should be readily appreciated by those skilled in the art that the guidewire 12 in ac...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

An elongate guidewire for use with a free, unsecured, intervascular device having an elongate, enclosed, open ended channel for receiving the guidewire. The guidewire includes an elongate, flexible body having an outer dimension which is less than the inner dimension of the channel and an expandable and contractable stop member mounted on the guidewire body for movement between a first contracted position and a second expanded position. The expandable and contractable stop member is dimensioned in the first contracted position to move through said channel and in the second expanded position to preclude movement of said stop member through the channel.

Description

[0001]This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60 / 155,090 filed on Sep. 22, 1999.TECHNICAL FIELD[0002]The present invention relates generally to a guidewire for positioning and removing emboli capture and recovery devices (ECRD) such as small filters in a vein or artery, and more particularly to a guidewire with an integral stop mechanism which, when expanded or extended, permits the guide wire to move freely with respect to the filter while preventing the guidewire from being inadvertently removed from association with the filter and when collapsed or retracted permits the guidewire to be inserted through or removed from the filter.BACKGROUND OF THE INVENTION[0003]In recent years, a number of intervascular medical devices have been designed which are adapted for compression into a small size to facilitate introduction into a body vessel such as an arterial or vascular passageway and which are subsequently expandable into contact with walls...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): A61M29/00A61F2/01
CPCA61F2/013A61F2002/015A61F2002/018A61F2230/005A61F2230/0067A61F2/011
Inventor KLESHINSKI, STEPHEN J.
Owner WL GORE & ASSOC INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products