Data storage device having a drive mechanism for rotating a data storage medium

a data storage device and drive mechanism technology, applied in the direction of motor/generator/converter stopper, dynamo-electric converter control, instruments, etc., can solve the problem of heating up of electronic components within the interior of the motor housing, and no longer arise the particularly critical problem of the heating of electronic components, etc., to achieve the resolution of recorded signals, shorten the axial length of the motor correspondingly, and large data carrier diameter

Inactive Publication Date: 2002-09-03
PAPST MOTOREN GMBH & CO KG
View PDF35 Cites 4 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The advantage of the invention resides in particular in the fact that, by using components that are anyway present in a data-storage unit of the type here in question, one can entirely eliminate the sensor structure that in prior art was conventionally provided internal to the motor, and can furthermore eliminate the associated circuitry and circuit board. As these no longer needed components were arranged in the motor housing at an axial end thereof, it becomes possible to shorten the axial length of the motor correspondingly. At the same time, one eliminates problems associated with the need to connect, inside the motor housing, a perhaps rather high number of coil ends to a circuit. Further, there no longer arises the particularly critical problem of the heating up of electronic components within the interior of the motor housing, which is closed and heats

Problems solved by technology

Further, there no longer arises the particularly critical problem of the heating up of electronic components wit

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Data storage device having a drive mechanism for rotating a data storage medium
  • Data storage device having a drive mechanism for rotating a data storage medium
  • Data storage device having a drive mechanism for rotating a data storage medium

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

FIG. 1 depicts the principles of an exemplary embodiment having an external-rotor brushless d.c. motor 1. The four-pole stator 2 is provided with a winding made up of four coils 3-6 and is, in a known fashion, encircled by a permanent-coils magnet rotor 7.

For the sake of a simple illustration of inventive principles there is shown an external-rotor d.c. motor having an annular air gap; self-evidently, however, one can use any other motor type that would be suitable, in the sense of reduced axial length, a disk-rotor motor having a planar air gap being also preferred.

Rigidly connected to shaft 8 of motor 1 is a hub 9 on which a data carrier 10 is arranged. The data carrier 10 is constituted by a rigid or flexible computer data-storage platter carrying data signals on concentric tracks. A write / read head 11 is arranged to be movable in radial direction over the data carrier 10; by means of head 11 data signals on the concentric tracks of data carrier 10 can be written, read, or erased...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A data medium is driven by a brushless direct current motor and possesses control signals on a track which can be picked up by a sensing device and supplied to a switch arrangement for activation of the motor winding. The control signals on the track characterize at least those angular positions of the rotor with respect to the stator in which commutation is to be initiated.

Description

BACKGROUND OF THE INVENTIONThe invention concerns rotation-imparting drive unit for rotating a data carrier having a brushless d.c. motor with a permanent-magnet rotor, and a stator having a winding, the winding being formed by one or plural winding coils, a circuit arrangement for controlling the energization of the winding to generate a magnetic field effecting rotary motion of the rotor, and also a reading arrangement for reading signals recorded on the data carrier.For driving data carriers such as computer data-storage platters use is generally made of a brushless d.c. motor, with a data-carrier-receiving hub preferably being secured directly on the motor's shaft, so that the data carrier be directly driven. In order to assure a reliable, error-free reading of the data signals despite high data recording density, it is necessary to drive the data carrier at a high speed that is uniform; for this purpose, as exact as possible a switchover (commutation) of the current fed to the ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): G11B19/20G11B19/28
CPCG11B19/2009G11B19/28
Inventor HANS, HELMUT
Owner PAPST MOTOREN GMBH & CO KG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products