Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Bulk GaN and AIGaN single crystals

a single crystal, gan technology, applied in the direction of single crystal growth details, crystal growth process, chemically reactive gases, etc., can solve the problem of relatively low growth rate at this temperature, and achieve the effect of prolonging the growth cycle, controlling the amount of ga undergoing a reaction, and limited production

Inactive Publication Date: 2005-11-03
FREIBERGER COMPOUND MATERIALS GMBH
View PDF39 Cites 7 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

This method enables the growth of large, high-quality GaN and AlGaN single crystal boules with low dislocation density and improved crystal properties, overcoming the limitations of existing substrate materials and growth techniques, resulting in superior device performance.

Problems solved by technology

Although the high temperature of this zone allows high quality crystal growth, the growth rate at this temperature is relatively low.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Bulk GaN and AIGaN single crystals
  • Bulk GaN and AIGaN single crystals
  • Bulk GaN and AIGaN single crystals

Examples

Experimental program
Comparison scheme
Effect test

specific embodiments

[0056] Embodiment 1

[0057] According to this embodiment of the invention, the modified HVPE process described above was used to grow thick GaN layers on SiC substrates. Suitable GaN substrates were then fabricated and used in conjunction with the modified HVPE process of the invention to grow a GaN single crystal boule. The second GaN boule was cut into wafers suitable for device applications.

[0058] In this embodiment, multiple SiC substrates of a 6H polytype were loaded into the growth zone of a reactor similar to that shown in FIG. 1. The substrates were placed on a quartz sample holder with the (0001) Si on-axis surface positioned for GaN deposition. One kilogram of Ga metal was positioned in the source boat within the Ga source tube. After purging the reactor with Ar gas to remove air, the growth zone and the Ga source zone were heated to 1100° C. and 650° C., respectively. The majority of the Ga source, however, was maintained at a temperature of less than 100° C., typically i...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
temperaturesaaaaaaaaaa
volumeaaaaaaaaaa
dimensionaaaaaaaaaa
Login to View More

Abstract

Bulk GaN and AlGaN single crystal boules, preferably fabricated using a modified HVPE process, are provided. The single crystal boules typically have a volume in excess of 4 cubic centimeters with a minimum dimension of approximately 1 centimeter. If desired, the bulk material can be doped during growth, for example to achieve n-, i-, or p-type conductivity.

Description

CROSS-REFERENCES TO RELATED APPLICATION [0001] This application is a continuation-in-part of U.S. patent application Ser. No. 09 / 900,833, filed Jul. 6, 2001.FIELD OF THE INVENTION [0002] The present invention relates generally to semiconductor materials and, more particularly, to bulk single crystals. BACKGROUND OF THE INVENTION [0003] Recent results in the development of GaN-based light-emitting diodes (LEDs) and laser diodes (LDs) operating in the green, blue, and ultraviolet spectrum have demonstrated the tremendous scientific and commercial potential of group III nitride semiconductors (e.g., GaN, AlN, InN, and their alloys). These applications require electrically conducting substrates (e.g., GaN or AlGaN) so that a vertical device geometry can be utilized in which the electrodes are located on the top and bottom surfaces of the device structure. In addition to opto-electronic devices, group III nitride semiconductors can be used in a host of other applications such as communic...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): C30B25/00
CPCC30B25/00C30B29/406C30B29/403C30B25/02C30B25/18
Inventor MELNIK, YURI V.SOUKHOVEEV, VITALIIVANTSOV, VLADIMIRTSVETKOV, KATIEDMITRIEV, VLADIMIR A.
Owner FREIBERGER COMPOUND MATERIALS GMBH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products