Process for the stabilization of dusting surfaces
a stabilization and dusting technology, applied in the direction of soil conditioning compositions, transportation and packaging, coatings, etc., can solve the problems of major environmental and health problems, pollute the environment, and pose health risks, and achieve the effect of avoiding environmental disadvantages
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Examples
example 3
[0035] According to comparison example 1, but instead of 4.7 g of the polymer dispersion, 5 g of a redispersible polymer powder based on a vinyl acetate-ethylene copolymer was mixed with a metal spatula into the dirt until it seemed homogenous. Then 15 g of water was added to the homogenous mixture and mixed in. The cup was then placed in an oven at 50° C. to accelerate drying. After 12 hours the cup was removed from the oven and was subjectively evaluated for binding of the dust by shaking the cup and observe the mass of particles that is emitted.
example 4
[0036] According to comparison example 1, but instead of 4.7 g of the polymer dispersion, 1.5 g of a redispersible polymer powder based on a vinyl acetate-ethylene copolymer, and 3 g of cementitious material was mixed with a metal spatula into the dirt until it seemed homogenous. Then 15 g of water was added to the homogenous mixture and mixed in. The cup was then placed in an oven at 50° C. to accelerate drying. After 12 hours the cup was removed from the oven and was subjectively evaluated for binding of the dust by shaking the cup and observe the mass of particles that is emitted.
example 5
[0037] Unlike comparison example 1, 1000 g of MI dirt was introduced into a one liter beaker. To the beaker was added 10 g of a redispersible polymer powder based on a vinyl acetate-ethylene copolymer, and 2.5 g of an ethoxylated fatty alcohol was mixed with a metal spatula into the dirt until it seemed homogenous. Then 15 g of water was added to the homogenous mixture. The beaker was then placed in an oven at 50° C. to accelerate drying. After 12 hours the beaker was removed from the oven and was subjectively evaluated for binding of the dust by shaking the cup and observe the mass of particles that is emitted.
[0038] The bound layer of dirt at the top of each beaker was then removed, physically crushed to a similar particle size as the original MI dirt, was mixed with 5% by weight of the homogeneous mixture from its respective beaker (to simulate mixing that would occur in an actual application), and was added back to the beaker. 15 g of water was then added to the top of the beak...
PUM
Property | Measurement | Unit |
---|---|---|
Permeability | aaaaa | aaaaa |
Impermeability | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com