Aqueous gel formulation and method for inducing topical anesthesia

Inactive Publication Date: 2008-01-24
AKORN
View PDF16 Cites 19 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0004]The foregoing need has been fulfilled to a great extent by the invention which provides an aqueous gel formulation comprising water, an anesthetic, a viscoelastic polymer, and a tonicity modifier. Specifically, the invention provides an aqueous gel formulation which comprises, consists essentially of, or consists of, water, an anesthetic, a viscoelastic polymer, and a tonicity modifier. The formulation may also contain a pH adjusting agent or a product produced as a result of pH adjustment. Advantageously, the gel formu

Problems solved by technology

However, subconjunctival injections of aqueous lidocaine are less than desirable as many patients suffer from anxiety caused by needle phobia and/or the physical pain caused by the actual injection.
However, there are some drawbacks with such drops.
Some of the drops administered to patient may miss t

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0025]This example illustrates a method of preparing an aqueous gel formulation comprising lidocaine hydrochloride in an amount of 15 mg per ml of the formulation in accordance with an embodiment of the invention.

[0026]500 ml of purified water is charged into a sterile vessel #1 using an aseptic technique. 25 g of sterile hydroxypropylmethylcellulose is charged into vessel #1 using an aseptic technique and mixed. In a separate vessel #2, 15 g of lidocaine hydrochloride and 9 g of sodium chloride are dissolved in about 400 ml of purified water and passed through a 0.2 micron filter and aseptically transferred to vessel #1 with mixing. Hydrochloric acid and / or sodium hydroxide solutions are filtered through a 0.2 micron filter and added to vessel #1 to adjust the pH to 6.0-6.5. Purified water is passed through a 0.2 micron filter to bring the formulation to 1 kg. The formulation is a sterile viscous gel and may be filled into sterile unit dose bottles of suitable size, e.g., 5 ml drop...

example 2

[0027]This example illustrates a method of preparing an aqueous gel formulation comprising lidocaine hydrochloride in an amount of 25 mg per ml of the formulation in accordance with an embodiment of the invention.

[0028]500 ml of purified water is charged into a sterile vessel #1 using an aseptic technique. 25 g of sterile hydroxypropylmethylcellulose is charged into vessel #1 using an aseptic technique and mixed. In a separate vessel #2, 25 g of lidocaine hydrochloride and 9 g of sodium chloride are dissolved in about 400 ml of purified water and passed through a 0.2 micron filter and aseptically transferred to vessel #1 with mixing. Hydrochloric acid and sodium hydroxide solutions are filtered through a 0.2 micron filter and added to vessel #1 to adjust pH 6.0-6.5. Purified water is passed through a 0.2 micron filter to bring the formulation to 1 kg. The formulation is a sterile viscous gel and may be filled into sterile unit dose bottles of suitable size, e.g., 5 ml dropper bottle...

example 3

[0029]This example illustrates a method of preparing an aqueous gel formulation comprising lidocaine hydrochloride in an amount of 35 mg per ml of the formulation in accordance with an embodiment of the invention.

[0030]500 ml of purified water is charged into a sterile vessel #1 using aseptic technique. 25 g of sterile hydroxypropylmethylcellulose is charged into vessel #1 using aseptic technique and mixed. In a separate vessel #2, 35 g of lidocaine hydrochloride and 9 g of sodium chloride are dissolved in about 400 ml of purified water and passed through a 0.2 micron filter and aseptically transferred to vessel #1 with mixing. Hydrochloric acid and sodium hydroxide solutions are filtered through a 0.2 micron filter and added to vessel #1 to adjust pH 6.0-6.5. Purified water is passed through a 0.2 micron filter to bring the formulation to 1 kg. The formulation is a sterile viscous gel and may be filled into sterile unit dose bottles of suitable size, e.g., 5 ml dropper bottles, usi...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Temperatureaaaaaaaaaa
Massaaaaaaaaaa
Densityaaaaaaaaaa
Login to view more

Abstract

Disclosed is a stable aqueous gel formulation suitable for topical use comprising water, an anesthetic (e.g., lidocaine hydrochloride), a viscoelastic polymer, and a tonicity modifier, wherein the aqueous gel formulation is free of preservatives and phosphate buffer, is isotonic with physiological fluids, and is sterile and has low particulate count. Also disclosed is a method of inducing topical anesthesia on a tissue or organ, e.g., the eye, of an animal comprising providing a stable aqueous gel formulation comprising water, an anesthetic, a viscoelastic polymer, and a tonicity modifier, wherein the aqueous gel formulation is free of preservatives and phosphate buffer, is isotonic with physiological fluids, and is sterile, and topically administering an effective amount of the aqueous gel formulation to the tissue or organ of the animal.

Description

BACKGROUND OF THE INVENTION[0001]Anesthesia is a process commonly used to block the perception of pain. The first public demonstration of administering an anesthetic agent occurred over 150 years ago when diethyl ether was utilized during a surgical operation to remove a tumor. Today, anesthetic agents are utilized in patient procedures across the medical specialties.[0002]Anesthetic agents are used in procedures carried out on various tissues and organs. For example, with regard to procedures performed on the eye, common anesthetic agents utilized include subconjunctival injections of aqueous lidocaine and tetracaine drops. However, subconjunctival injections of aqueous lidocaine are less than desirable as many patients suffer from anxiety caused by needle phobia and / or the physical pain caused by the actual injection. Indeed, it is believed that the anxiety levels can reach the point where patients avoid the necessary medical care. The topical administration of tetracaine drops av...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): A61K31/27A61K31/16
CPCA61K9/0048A61K31/167A61K47/38A61K9/06
Inventor ALAM, ABUREICHEL, ELIASBUSBEE, BRANDON
Owner AKORN
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products