Binding of fibrous material utilizing a crosslinked polyamic acid
a technology of crosslinked polyamic acid and fibrous materials, which is applied in the field of improved aqueous binding composition for use with fibrous materials, can solve the problems of unsuitable resins for fiberglass binders, inability to equate fiberglass binders with paper or wood products, and unwanted accumulation of fibers on the forming chamber walls
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Examples
example 1
[0054]To a flask equipped with a reflux condenser were added 400 grams of water and 113 grams of a 30 percent solution of ammonia. To this solution were added 480 grams of poly(styrene-maleic)anhydride having a molecular weight of approximately 2,000 with stirring until partially dissolved. The solution was next heated to 90° C. and was maintained at that temperature for two hours to produce a clear solution of water-soluble polyamic acid having both amide and carboxylic acid groups.
example 2
[0055]To 100 grams of the polyamic acid solution of Example 1 were added with stirring 10.0 grams of diethanolamine serving as an organic crosslinking agent that was capable of undergoing a covalent crosslinking reaction with the polyamic acid. The resulting aqueous solution, having a viscosity somewhat greater than that of Example 2, next was coated on fiberglass by means of a curtain coater while in a bat configuration, and the coated fiberglass was heated at 180° C. for 2 minutes to expeditiously achieve the curing and crosslinking of the polyamic acid to form a white, rigid, and highly water-resistant cured binder in association with the fiberglass wherein adjoining fibers were bound at cross-over points. The cured binder was present on the fiberglass in a concentration of approximately 6 percent by weight based on the weight of the fiberglass. Comparable results were obtained at a curing temperature of 200° C. as well as when 7.0 grams of diethanolamine crosslinking agent were ...
example 3
[0056]Example 2 was repeated with the exception that 10.0 grams of triethanolamine crosslinking agent were substituted for the diethanolamine crosslinking agent. Comparable results were achieved at a curing temperatures of 180° C. and 200° C. and when 15.0 grams of triethanolamine crosslinking agent were utilized.
PUM
Property | Measurement | Unit |
---|---|---|
Temperature | aaaaa | aaaaa |
Temperature | aaaaa | aaaaa |
Percent by mass | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com