Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Method and device for producing a tomosynthetic 3D x-ray image

a tomosynthetic and 3d x-ray technology, applied in tomography, instruments, applications, etc., can solve the problem of severely attenuated individual dose emitted by such emitters, and achieve the effect of increasing the dos

Inactive Publication Date: 2010-02-11
SIEMENS AG
View PDF9 Cites 54 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0010]An object of the present invention to provide a method and a device to generate a tomosynthetic 3D x-ray image which allow an exposure of an examination subject with a higher dose.
[0012]The method according to the invention has the following advantages. Since the maximum individual dose that can be generated by a single emitter of the x-ray source is limited, a plurality of single images can be generated via repeated activation of the same emitter, and thus the dose provided for the exposure of a 2D projection image can be increased. Moreover, by repeated activation of individual emitters the possibility arises to adjust a distribution of the total dose emitted by the x-ray source. For example, a few projections of the examination subject can thus be acquired with a higher dose, which leads to the situation that the quality of the subsequently computed tomosynthetic 3D x-ray image can be improved. By the individual activation of the emitters it is moreover possible to compensate for a non-uniform dose distribution in the 3D tomosynthesis image that is due to the exposure geometry. This is explained using the following example. An examination subject is often a female breast fixed between two compression plates. Those x-rays which emanate from the emitters that enclose a small angle with a surface normal of the aforementioned compression plates travel a comparably short path through the examination subject. In contrast to this, those x-rays which emanate from emitters that enclose a large angle with the surface normals travel a comparably longer path through the examination subject. The individual dose emitted by such emitters is therefore severely attenuated. The consequence is a non-uniform dose distribution that can be compensated in that those emitters that enclose a large angle with the surface normal emit multiple individual doses to generate a 2D projection image.
[0014]In an x-ray source having multiple emitters that can be activated individually, the x-ray dose that can be released by a single emitter is limited, since the danger exists that the (comparably small) x-ray emitter thermally may overheat. To solve this problem, after a first emitter has been activated to emit a first individual dose, an additional emitter different from the first emitter is activated first before this first emitter is activated again to emit an additional individual dose. At least the emission time of the additional emitter is thus provided as a cooldown time. It is possible for a longer cool-down time to occur for the first emitter. For this purpose as many additional emitters as possible can be activated between the individual emission processes of a specific emitter, the individual doses of which additional emitters are likewise used to generate the 3D tomosynthesis image. A maximum cooldown time is thus provided for the first activated emitter without the exposure time for the entire tomosynthetic 3D x-ray image being extended.
[0018]For further simplification of the activation, according to a further embodiment a constant product of current and emission time is provided for all emitters of the x-ray source. It is thus advantageously possible to control the exposure of a 2D projection image merely via the number of required individual doses.
[0019]The object is moreover achieved with a device according to the invention wherein the x-ray source of the device has at least one emitter that has a field emission cathode which is formed of carbon nanotubes. Moreover, the device has an x-ray detector with low inherent noise. With a field emission cathode whose field emitter consists of carbon nanotubes, it is possible to generate individual x-ray doses with nearly arbitrary temporal shape. Moreover, such cathodes can easily be miniaturized. An x-ray detector with low inherent noise is particularly advantageous since multiple individual images are added to calculate a 2D projection image. A low inherent noise of the x-ray detector prevents that a 2D projection image with a poor signal-to-noise ratio is obtained as a result of the addition of the individual images.

Problems solved by technology

The individual dose emitted by such emitters is therefore severely attenuated.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method and device for producing a tomosynthetic 3D x-ray image
  • Method and device for producing a tomosynthetic 3D x-ray image

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0023]The FIGURE shows a mammography device with an x-ray source 2 that has a plurality of emitters 4. Shown is an x-ray source 2 with N emitters 41 through 4N. The individual emitters 4 are arranged in parallel in the manner of an array and generate x-rays 3 that expose an examination subject 6 (a female breast in the present case). The individual emitters 4 are arranged so that they expose the examination subject 6 from different angles α. The exposure direction 16″ of the i-th emitter 4i thereby encloses the angle αi with a surface normal 9. To adjust the exposure directions 16, 16′, 16″, 16″′, the emitters 4 can be arranged rotated slightly counter to one another in the x-ray source 2.

[0024]The examination subject 6 is fixed between a compression plate 8 and a bearing plate 10. An x-ray detector 12 that is composed of a number of individual detectors 14 in a matrix formation is located on the side of the examination subject 6 facing away from the x-ray source 2. The x-ray detect...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

In a method and device for producing a tomosynthetic 3D x-ray image, a number of 2D projection images of an examination subject are acquired using a fixed x-ray source. The x-ray source has multiple, individually controllable emitters that respectively emit a single x-ray dose from various different directions. The tomosynthetic 3D image is reconstructed from the individual 2D projection images, and at least one 2D projection image is composed of multiple individual images.

Description

BACKGROUND OF THE INVENTION[0001]1. Field of the Invention[0002]The invention concerns a method that is in particular suitable for mammography, as well as a device to generate a tomosynthetic 3D x-ray image. In such a tomosynthetic method, a number of x-ray images of an examination subject are acquired from different directions. The tomosynthetic 3D x-ray image is subsequently calculated from the 2D projection images obtained in this way.[0003]2. Description of the Prior Art[0004]A tomosynthetic 3D x-ray image is an image data set that is composed of slice images. Such an image data set acquired via reconstruction of 2D projection images is designated in the following as a tomosynthetic 3D x-ray image or 3D tomosynthesis image.[0005]Mammography concerns an x-ray examination of the breast with the goal of detecting malignant tumors at an optimally early stage. Through continuous improvement of imaging methods it is sought to generate x-ray images with greater significance in order to...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): G06K9/00H05G1/60
CPCA61B6/032A61B6/4028A61B6/405A61B6/4085H01J2235/068A61B6/482A61B6/502A61B6/542H01J2235/062A61B6/466
Inventor MERTELMEIER, THOMAS
Owner SIEMENS AG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products