Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Dialysis device for separating pathogens from a biological sample

Inactive Publication Date: 2011-12-22
GENEASYS
View PDF1 Cites 4 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0081]The easily usable, mass-producible, and inexpensive multichip lab accepts a biological sample, uses a dialysis chip for separating the pathogens in the sample, and separately processes the nucleic acid content of the pathogens separated from the sample. The dialysis chip functionality extract additional information from the sample and increases the sensitivity, signal-to-noise ratio, and dynamic range of the assay system.
[0082]The multichip lab provides for higher modularity. Surface-micromachined chips in the assembly would each be much smaller and disproportionately cheaper that a monolithic chip capable of providing the total functionality of the assembly. Alternatively a large yet cost-effective dialysis chip can provide a high level of dialysis capacity providing for further increased sensitivity, signal-to-noise ratio, and dynamic range for the assay system.

Problems solved by technology

Insufficient stringency can result in a high degree of nonspecific binding.
Excessive stringency can lead to a failure of appropriate binding, which results in diminished sensitivity.
Despite the advantages that molecular diagnostic tests offer, the growth of this type of testing in the clinical laboratory has been slower than expected and remains a minor part of the practice of laboratory medicine.
This is primarily due to the complexity and costs associated with nucleic acid testing compared with tests based on methods not involving nucleic acids.
However, controlling fluid flow through the LOC device, adding reagents, controlling reaction conditions and so on necessitate bulky external plumbing and electronics.
Connecting a LOC device to these external devices effectively restricts the use of LOC devices for molecular diagnostics to the laboratory setting.
The cost of the external equipment and complexity of its operation precludes LOC-based molecular diagnostics as a practical option for point-of-care settings.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Dialysis device for separating pathogens from a biological sample
  • Dialysis device for separating pathogens from a biological sample
  • Dialysis device for separating pathogens from a biological sample

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

Overview

[0201]This overview identifies the main components of a molecular diagnostic system that incorporates embodiments of the present invention. Comprehensive details of the system architecture and operation are set out later in the specification.

[0202]Referring to FIGS. 1, 2, 3, 85 and 86, the system has the following top level components:

[0203]Test modules 10 and 11 are the size of a typical USB memory key and very cheap to produce. Test modules 10 and 11 each contain a microfluidic device, typically in the form of a lab-on-a-chip (LOC) device 30 preloaded with reagents and typically more than 1000 probes for the molecular diagnostic assay (see FIGS. 1 and 85). Test module 10 schematically shown in FIG. 1 uses a fluorescence-based detection technique to identify target molecules, while test module 11 in FIG. 85 uses an electrochemiluminescence-based detection technique. The LOC device 30 has an integrated photosensor 44 for fluorescence or electrochemiluminescence detection (de...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Lengthaaaaaaaaaa
Flow rateaaaaaaaaaa
Tensionaaaaaaaaaa
Login to View More

Abstract

A dialysis device to separate pathogens from a biological sample, the dialysis device having a first channel for receiving the biological sample, a second channel, and, a plurality of apertures, wherein, the second channel is fluidically connected to the first channel via the apertures such that the pathogens flow from the first channel to the second channel and larger constituents in the biological sample remain in the first channel.

Description

CO-PENDING APPLICATIONS[0001]The following applications have been filed by the Applicant which relate to the present application:GBS001USGBS002USGBS003USGBS005USGBS006USGSR001USGSR002USGAS001USGAS002USGAS003USGAS004USGAS006USGAS007USGAS008USGAS009USGAS010USGAS012USGAS013USGAS014USGAS015USGAS016USGAS017USGAS018USGAS019USGAS020USGAS021USGAS022USGAS023USGAS024USGAS025USGAS026USGAS027USGAS028USGAS030USGAS031USGAS032USGAS033USGAS034USGAS035USGAS036USGAS037USGAS038USGAS039USGAS040USGAS041USGAS042USGAS043USGAS044USGAS045USGAS046USGAS047USGAS048USGAS049USGAS050USGAS054USGAS055USGAS056USGAS057USGAS058USGAS059USGAS060USGAS061USGAS062USGAS063USGAS065USGAS066USGAS067USGAS068USGAS069USGAS070USGAS080USGAS081USGAS082USGAS083USGAS084USGAS085USGAS086USGAS087USGAS088USGAS089USGAS090USGAS091USGAS092USGAS093USGAS094USGAS095USGAS096USGAS097USGAS098USGAS099USGAS100USGAS101USGAS102USGAS103USGAS104USGAS105USGAS106USGAS108USGAS109USGAS110USGAS111USGAS112USGAS113USGAS114USGAS115USGAS117USGAS118USGAS119USGAS1...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): C12M1/12
CPCB01L3/5027Y10T436/25B01L3/502738B01L7/52B01L2200/10B01L2300/023B01L2300/024B01L2300/0636B01L2300/0654B01L2300/0883B01L2300/10B01L2300/1827B01L2400/0406B01L2400/0633B01L2400/0677B01L2400/0688F16K99/003F16K99/0036G01N27/223C12Q1/68Y10T436/107497Y10T436/173845Y10T436/143333Y10T436/11Y10T436/145555Y10T436/203332Y10T436/25375B01L3/502707Y10T137/0352Y10T137/0391Y10T137/1044Y10T137/206Y10T137/2076Y10T137/2202Y02A90/10
Inventor SILVERBROOK, KIAAZIMI, MEHDI
Owner GENEASYS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products