Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

2h-chromene compound and derivative thereof

a technology of chromene compound and compound, which is applied in the field of 2hchromene compound and a derivative thereof, can solve the problems of reduced lung function and infrequent pulses

Inactive Publication Date: 2012-07-12
ASTELLAS PHARMA INC
View PDF0 Cites 1 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0037]The compound of the formula (I) or a salt thereof of the present invention has an S1P1 agonist action and can be used for prevention or treatment of diseases induced by undesirable lymphocyte infiltration, for example, autoimmune diseases or inflammatory diseases such as rejection or graft-versus-host diseases during organ, bone marrow, or tissue transplantation, rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, nephrotic syndrome, encephalomeningitis, myasthenia gravis, pancreatitis, hepatitis, nephritis, diabetes, lung disorders, asthma, atopic dermatitis, inflammatory bowel disease, arteriosclerosis, ischemic reperfusion disorder, and diseases induced by abnormal proliferation or accumulation of cells, for example, cancer, leukemia, and the like.

Problems solved by technology

However, there have also been reported side effects such as infrequent pulse, reduced lung function (Transplantation, 2006, 82, pp.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • 2h-chromene compound and derivative thereof
  • 2h-chromene compound and derivative thereof
  • 2h-chromene compound and derivative thereof

Examples

Experimental program
Comparison scheme
Effect test

preparation example 1

[0170]7-[(5-Bromo-4-phenyl-2-thienyl)methoxy]-2H-chromene-3-carbaldehyde (120 mg) was dissolved in DMF (2.4 mL). To this reaction liquid were added Zn(CN)2 (65 mL) and Pd(PPh3)4 (65 mg) at room temperature. The reaction mixture was stirred at 100° C. for 5 hours and then poured into 1:1 a mixed vehicle of aqueous NaHCO3 and EtOAc, followed by stirring for 1 hour. The organic layer was washed with brine, dried over MgSO4, and then concentrated under reduced pressure, followed by purification by silica gel column chromatography (hexane:EtOAc=100:0 to 70:30) to obtain 5-{[(3-formyl-2H-chromen-7-yl)oxy]methyl}-3-phenylthiophene-2-carbonitrile (83 mg) as a pale yellow solid.

preparation example 2

[0171]To a solution of methyl 5-bromo-4-phenylthiophene-2-carboxylate in dioxane were added 2-isopropenyl-4,4,5,5-tetramethyl 1,3,2-dioxaborolane and a 2 M aqueous Na2CO3 solution. To the reaction mixture were added palladium acetate and PPh3, followed by stirring at 100° C. for 5 hours. After leaving to be cooled, a saturated aqueous NH4Cl solution was added thereto, followed by extraction with EtOAc. The organic layer was washed with brine, dried over MgSO4, and then concentrated under reduced pressure, followed by purification by silica gel column chromatography (hexane:EtOAc=95:5 to 80:20) to obtain methyl 5-isopropenyl-4-phenylthiophene-2-carboxylate as a colorless liquid.

[0172]In the same manner as in Preparation Example 2, the compounds of Preparation Example 2-1 through Preparation Example 2-4 shown in Tables described later were prepared.

preparation example 3

[0173]To a solution of DMF (2.5 mL) in DCM (3 mL) was added dropwise POCl3 (2 mL) at 0° C., followed by stirring at room temperature for 30 minutes. Subsequently, to the reaction liquid were added dropwise 8-(benzyloxy-3,4-dihydro-1-benzoxepin-5(2H)-one in DCM (4 mL), followed by stirring at room temperature for 1 hour and at 50° C. for 3 hours. To the reaction liquid was added water, followed by extraction with EtOAc twice. The organic layer was combined, washed with water and brine, dried over MgSO4, and then concentrated under reduced pressure. The residue was purified by silica gel column chromatography (automatic purification device; hexane:EtOAc=97:3 to 90:10) to obtain 8-(benzyloxy)-5-chloro-2,3-dihydro-1-benzoxepin-4-carbaldehyde (445 mg).

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

Provided is a 2H-chromene compound or a derivative thereof which has an excellent S1P1 agonist action. The 2H-chromene compound or derivative is particularly useful for preventing and / or treating a disease induced by undesirable lymphocyte infiltration or a disease induced by abnormal proliferation or accumulation of cells.

Description

TECHNICAL FIELD[0001]The present invention relates to a 2H-chromene compound and a derivative thereof, which are useful as an active ingredient for a pharmaceutical composition, particularly a pharmaceutical composition for preventing or treating diseases induced by undesirable lymphocyte infiltration or diseases induced by abnormal proliferation or accumulation of cells.BACKGROUND ART[0002]Sphingosine 1-phosphate is a metabolite of sphingolipid which is a physiologically active substance secreted from an activated platelet (Annual Review Biochemistry, 2004, Vol. 73, pp. 321-354). The sphingosine 1-phosphate receptor is a G-protein-binding type, and belongs to an Edg-family which is the endothelial differentiation gene. Up to now, five receptors of S1P1 (Edg1), S1P2 (Edg5), S1P3 (Edg3), S1P4 (Edg6), and S1P5 (Edg8) have been found. All of these receptors are broadly distributed in cells and tissues throughout the body, but S1P1, S1P3, and S1P4 are predominantly expressed in lymphocy...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): A61K31/4025A61K31/397A61K31/427A61P29/00A61K31/444A61K31/5377A61K31/497A61P37/06A61K31/453A61K31/4155
CPCC07D403/12C07D405/06C07D405/14C07D409/06C07D409/12C07D409/14C07D413/14C07D417/14A61P1/00A61P1/04A61P1/16A61P1/18A61P11/00A61P11/06A61P13/12A61P17/00A61P19/02A61P21/04A61P25/00A61P25/28A61P29/00A61P35/00A61P35/02A61P37/06A61P37/08A61P43/00A61P9/10A61P3/10A61K31/4025
Inventor HARADA, HIRONORIHATTORI, KAZUYUKIFUJITA, KAZUYAIMADA, SUNAOMOROKATA, TATSUAKI
Owner ASTELLAS PHARMA INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products