Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Catheter with sealed hydratable hemostatic occlusion element

Inactive Publication Date: 2013-03-07
CARDIVA MEDICAL
View PDF7 Cites 35 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The present invention is an apparatus for sealing a blood vessel wall penetration. It consists of a shaft, a hydratable hemostatic implant, a protective sleeve, and an element or component that inhibits leakage of fluids beneath the protective sleeve. The shaft is introduced through a tissue tract and positioned within the blood vessel lumen. The hemostatic implant is fixed to the shaft to prevent it from being displaced during the procedure. This invention provides a reliable and efficient method for sealing blood vessel wall penetration.

Problems solved by technology

The use of the hemostatic implant together with the temporary hemostasis provided by the occlusion element increases the likelihood that even relatively large vascular penetrations can be successfully closed and usually reduces the time needed to achieve such closure.
Such fully circumscribing implants, however, can have difficulty being released from the shaft after they are exposed and hydrated.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Catheter with sealed hydratable hemostatic occlusion element
  • Catheter with sealed hydratable hemostatic occlusion element
  • Catheter with sealed hydratable hemostatic occlusion element

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0040]Referring to FIGS. 1 and 1A, an exemplary sealing apparatus 10 constructed in accordance with the principles of the present invention comprises a shaft assembly 70 including an outer tube 71 and an inner rod 76. An expansible occlusion element 90 is mounted at a distal end (to the right in FIGS. 1 and 1A) of the shaft assembly 70 and includes a radially expansible mesh 74 covered by an elastomeric membrane 96. A handle assembly 78 is attached to a proximal end of the shaft assembly 70 and is operatively attached to both the outer tube 71 and inner rod 76 so that the inner rod can be axially advanced and retracted relative to the outer tube. The inner rod 76 and outer tube 71 are coupled together at the distal tip of the sealing apparatus 10 by a plug 77 and a proximal anchor 75, respectively. The occlusion element 90 is held between the plug 77 and the proximal anchor 75 so that axial retraction of the rod in the proximal direction (to the left as shown in FIGS. 1 and 1A) fore...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

Apparatus for sealing a vascular wall penetration disposed at the end of the tissue tract comprises a shaft, an optional occlusion element, a hydratable hemostatic implant, and a protective sleeve. The apparatus is deployed through the tissue tract with the occlusion element optionally occluding the vascular wall penetration and inhibiting backbleeding therethrough. The hydratable hemostatic implant, which will typically be a biodegradable polymer such as collagen carrying an anti-proliferative agent or coagulation promoter, will then be deployed from the sealing apparatus by retracting the protective sleeve and left in place to enhance closure of the vascular wall penetration with minimum scarring. The hydratable implant will be protected from premature hydration and swelling by a soluble plug covering the implant's distal end prior to sleeve retraction.

Description

BACKGROUND OF THE INVENTION[0001]1. Field of the Invention[0002]The present invention relates generally to medical devices and methods. More particularly, the present invention relates to apparatus and protocols for closing arteriotomies and other vascular wall penetrations.[0003]Angiography, angioplasty, atherectomy, and a number of other vascular and cardiovascular procedures are performed intravascularly and require percutaneous access into the patient's vasculature, most often into the arterial vasculature. The most common technique for achieving percutaneous access is called the Seldinger technique, where access to an artery, typically the femoral artery in the groin, is first established using a needle to form a “tract,” i.e., a passage through the tissue overlying the blood vessel. The needle tract is then dilated, and an access sheath is placed into the dilated tract and through a penetration in the vascular wall, such as an arteriotomy to allow the introduction of guidewire...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): A61B17/03
CPCA61B17/0057A61B2017/00623A61B2017/22067A61B2017/00898A61B2017/00654
Inventor YASSINZADEH, ZIA
Owner CARDIVA MEDICAL
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products