Method and system for gel curing a varnish of a stator assembly

a stator assembly and gel curing technology, applied in the direction of structural associations, dynamo-electric machines, supports/encloses/casings, etc., can solve the problems of affecting the performance, longevity, cost of the stator assembly,

Active Publication Date: 2022-05-05
GM GLOBAL TECH OPERATIONS LLC
View PDF16 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0002]During the manufacture of a stator assembly, electrical conductors are mechanically coupled together and electrically insulated from one another. To do so, an electrically-insulating material (i.e., varnish) is applied to the electrical conductors of the stator assembly. The electrically-insulating material is then cured to secure the electrical conductors to each other. However, during curing, at least some of the electrically-insulating material is lost to evaporation, thereby impacting the performance, longevity, and cost of the stator assembly. It is therefore desirable to minimize evaporation of the electrically-insulating material during gel curing.SUMMARY
[0003]The present disclosure describes a system and method that may be used to gel cure an electrically-insulating material (e.g., varnish) in a stator assembly while minimizing evaporation of the electrically-insulating material. In an aspect of the present disclosure, the method for gel curing a varnish of a stator assembly includes: applying an electrically-insulating material to a plurality of electrical conductors of a stator assembly; monitoring a temperature of the stator assembly using at least one temperature sensor; comparing the temperature of the stator assembly with a target temperature; determining whether the temperature of the stator assembly has reached a target temperature; in response to determining that the temperature of the stator assembly is equal to the target temperature, heating the stator assembly using the induction heating element to maintain the temperature of the stator assembly at the target temperature for a predetermined amount of time.
[0004]Additionally, the method includes comparing the temperature of the stator assembly with a final target temperature after heating the stator assembly to maintain the temperature of the stator assembly at the target temperature for the predetermined amount of time; determining whether the temperature of the stator assembly is equal to the final target temperature; in response to determining that the target temperature is not equal to the final target temperature, increasing the target temperature by a predetermined amount of degrees. The method further includes repeating monitoring the temperature of the stator assembly, comparing the temperature of the stator assembly with the target temperature, determining whether the temperature of the stator assembly has reached the target temperature, heating the stator assembly using the induction heating element to maintain the temperature of the stator assembly at the target temperature for the predetermined amount of time, comparing the temperature of the stator assembly with the final target temperature, determining whether the temperature of the stator assembly is equal to the final target temperature, and increasing the target temperature by the predetermined amount of degrees until the target temperature is equal to the final target temperature to minimize evaporation of the electrically-insulating material.

Problems solved by technology

However, during curing, at least some of the electrically-insulating material is lost to evaporation, thereby impacting the performance, longevity, and cost of the stator assembly.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method and system for gel curing a varnish of a stator assembly
  • Method and system for gel curing a varnish of a stator assembly

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0018]The following detailed description is merely exemplary in nature and is not intended to limit the application and uses. Furthermore, there is no intention to be bound by expressed or implied theory presented in the preceding technical field, background, brief summary, or the following detailed description. As used herein, the term “module” refers to hardware, software, firmware, electronic control component, processing logic, and / or processor device, individually or in combination, including without limitation: application specific integrated circuit (ASIC), a field-programmable gate-array (FPGA), an electronic circuit, a processor (shared, dedicated, or group) and memory that executes one or more software or firmware programs, a combinational logic circuit, and / or other suitable components that provide the described functionality.

[0019]Embodiments of the present disclosure may be described herein in terms of functional and / or logical block components and various processing st...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A method for gel curing a varnish of a stator assembly includes: applying an electrically-insulating material to a plurality of electrical conductors of a stator assembly; monitoring a temperature of the stator assembly using at least one temperature sensor; determining whether the temperature of the stator assembly has reached a target temperature; in response to determining that the temperature of the stator assembly is equal to the target temperature, heating the stator assembly using the induction heating element to maintain the temperature of the stator assembly at the target temperature for a predetermined amount of time; determining whether the temperature of the stator assembly is equal to the final target temperature; in response to determining that the target temperature is not equal to the final target temperature, increasing the target temperature by a predetermined amount of degrees.

Description

INTRODUCTION[0001]The present disclosure generally relates to methods and system for gel curing a varnish of a stator assembly.[0002]During the manufacture of a stator assembly, electrical conductors are mechanically coupled together and electrically insulated from one another. To do so, an electrically-insulating material (i.e., varnish) is applied to the electrical conductors of the stator assembly. The electrically-insulating material is then cured to secure the electrical conductors to each other. However, during curing, at least some of the electrically-insulating material is lost to evaporation, thereby impacting the performance, longevity, and cost of the stator assembly. It is therefore desirable to minimize evaporation of the electrically-insulating material during gel curing.SUMMARY[0003]The present disclosure describes a system and method that may be used to gel cure an electrically-insulating material (e.g., varnish) in a stator assembly while minimizing evaporation of t...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): H02K15/12H02K15/02H02K5/08
CPCH02K15/12H02K5/08H02K15/02H02K15/10H02K11/25
Inventor MATZNICK, DALTON D.WILSON, TIMOTHY M.CIAVARELLI, ERIC J.
Owner GM GLOBAL TECH OPERATIONS LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products