Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Multi-channel micro-fluidic chip device for simultaneous detection of swine flu of multiple subtypes

A microfluidic chip, swine flu technology, applied in the field of analysis and testing, can solve the problems of large flow resistance, difficulty in passing fine liquid flow, and has not been properly solved, and achieves the effect of increased compatibility and strong absorption capacity.

Inactive Publication Date: 2016-08-24
NINGBO UNIV
View PDF3 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0007] But it's not that simple
[0008] First, this polydimethylsiloxane material, the material referred to by the acronym PDMS, is itself a strongly hydrophobic material. Microchannels are built on this material. If the microchannels are not targeted The modification operation of the surface of the channel, then, after the overall assembly is completed, that is, after the cover is covered, because the inner surface of the micro channel in the structure occupies most of the inner surface of the liquid flow channel, then the PDMS micro channel The strong hydrophobic characteristic of the inner surface of the channel is the decisive factor, which will make it very difficult for the polar liquid flow similar to the aqueous solution to pass through, and its flow resistance is so large that even ordinary micropumps are difficult to push. Of course, If the cover sheet also chooses to use the PDMS material, then the problem is basically the same, with little difference; therefore, in the prior art, it is necessary to modify and modify the inner surface of the microchannel on the PDMS material; then , is this modification operation for the inner surface of the PDMS microchannel very troublesome? That's not the problem. What constitutes a serious technical problem is another problem: the PDMS polymer molecules in the bulk phase of the PDMS material substrate have the characteristics of automatic diffusion and migration to the surface. The characteristics of polymer molecules diffusing and migrating to the surface automatically will make the modified state of the inner surface of the microchannel modified by the surface modification unable to maintain for a long enough time, and the microgroove after surface modification The maintenance time of the inner surface state of the channel is roughly only enough to complete the time required for the internal test experiment in the laboratory; in other words, the inner surface of the PDMS microchannel after surface modification or surface modification is formed after modification The surface state of the surface does not last long, but quickly tends to or changes back to the surface state before the surface modification, and returns to the original strongly hydrophobic surface state in a relatively short period of time. Then, just imagine, Can such microfluidic chips be produced in large quantities, stored in large quantities, and widely promoted? The answer is obvious, that is, impossible
This problem has also existed for many years, and so far, it has not been properly solved

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Multi-channel micro-fluidic chip device for simultaneous detection of swine flu of multiple subtypes
  • Multi-channel micro-fluidic chip device for simultaneous detection of swine flu of multiple subtypes

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0050] exist figure 1 and figure 2 In the illustrated embodiment of the present case, the structure of the microfluidic device includes a multi-channel microfluidic chip, and the structure of the microfluidic chip includes a substrate 13 and a cover sheet 14 that are attached to each other and installed together. Both the substrate 13 and the cover sheet 14 are plates or sheets, and the surface of the substrate 13 facing the cover sheet 14 contains a channel structure formed by a molding process or an etching process, and the substrate 13 also contains The window structure connected to the channel structure and pierced through the substrate 13 is formed by a molding process, an etching process or a simple punching process, and the substrate 13 and the cover 14 that are attached to each other are jointly constructed to form a A microfluidic chip containing a pipe structure and a liquid pool structure connected thereto. The structure of the pipe is located at the interface are...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Diameteraaaaaaaaaa
Lengthaaaaaaaaaa
Thicknessaaaaaaaaaa
Login to View More

Abstract

The invention relates to a multi-channel micro-fluidic chip device for simultaneous detection of swine flu of multiple subtypes, and belongs to the field of analytical testing. The device solves a series of problems existing actually when polydimethylsiloxane (PDMS) low in cost and easy to process is used for manufacturing a substrate of a micro-fluidic chip for subtype swine flu diagnosis and the problems that the suface of the PDMS material is hydrophobic intensively, and the effect of specific surface modification or surface finishing cannot be lasting easily. The device is characterized in that the PDMS with the raw surface is selected as the substrate, a micro ultrasonic transducer is arranged at the adjacent position of a sample fluid flow terminal of the micro-fluidic chip, interfacial tension can be lowered in an ultrasonic mode, meanwhile, the strength of ultrasonic waves is rapidly and gradually lowered within the short distance by means of the strong ultrasonic absorbing capacity of the PDMS, the interface tension difference is formed between the two ends of the chip, then, the pressure difference between the two ends is formed, and the pressure difference drives sample fluid flow to flow towards the terminal along a capillary tube channel.

Description

technical field [0001] The invention relates to a multi-channel microfluidic chip device for simultaneous detection of multiple subtypes of swine influenza. The microfluidic device is a special device for diagnosing subtype swine influenza antigens based on antigen / antibody specific reactions, and belongs to the field of analysis and testing. . Background technique [0002] For the technical background of multi-channel microfluidic subtype swine influenza diagnosis, please refer to CN 201110311127.1 and other invention patent applications. [0003] As far as the overall overview of microfluidic technology itself is concerned, you can refer to the monograph "Illustrated Microfluidic Chip Laboratory" published by the famous microfluidic expert Mr. Lin Bingcheng not long ago, which has been published by Science Press. The past, present, and future prospects of microfluidic technology, etc., have detailed and long-form discussions that go deep into specific details. [0004] S...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): B01L3/00G01N33/53
Inventor 冯小彬干宁张佳斌李天华严清潘慕云崔焕李榕生
Owner NINGBO UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products