Nitrogen gate containing silicon oxide layer structure of semiconductor device and preparation technique
A gate silicon oxide, manufacturing process technology, used in semiconductor/solid-state device manufacturing, semiconductor devices, electrical components, etc.
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Image
Examples
Embodiment 1
[0020] With rapid annealing oven (RTO), under normal pressure or reduced pressure
[0021] 1. In NO gas, at a temperature of 1000° C., grow a thin layer of silicon oxynitride (SiON) on the surface of a clean silicon wafer with a thickness of 8 Å.
[0022] 2. Turn off the NO gas and replace it with pure oxygen (O 2 ) gas, in this pure oxygen gas, the silicon wafer is further oxidized, that is, a thin silicon oxide (SiO) layer is grown under the newly grown SiON film, and its thickness is about 15 Å;
[0023] 3. Close O 2 Gas, then use NO gas, and anneal in this NO gas, so that a small amount of N in the NO gas diffuses to the interface between silicon oxide and silicon, forming a thin SiON interface layer with a thickness of about 3 Å;
[0024] 4. In order to further improve the quality of this gate silicon oxide, turn off the NO gas and replace it with O 2 Gas, so that the gate silicon oxide grown on it is further in O 2 Annealing in the gas for 30 seconds pushes the N ele...
Embodiment 2
[0026] 1. Using a rapid annealing furnace (RTO), under normal pressure or reduced pressure, in NO gas, at a temperature of 800°C, grow a layer of SiON on a silicon wafer with a thickness of 5 Å.
[0027] 2. Turn off the NO gas and replace it with O 2 gas to further oxidize the silicon wafer, and grow a layer of SiO under SiON with a thickness of 3 Å;
[0028] 3. Close O 2 Gas, and then replaced with NO gas, annealed in NO gas to form a SiON interface layer with a thickness of 7 Å;
[0029] 4. Turn off the NO gas and replace it with O 2 Gas, the grown gate silicon oxide will be further in O 2 Annealing in the gas for 10 seconds pushes the N element distributed on the silicon oxide-silicon interface away from the silicon surface by about 5 Å.
Embodiment 3
[0031] 1. Using a rapid annealing furnace (RTO), under normal pressure or reduced pressure, in NO gas, at a temperature of 1100°C, grow a layer of SiON on a silicon wafer with a thickness of 20 Å.
[0032] 2. Turn off the NO gas and replace it with pure oxygen gas, and grow a layer of SiO under the grown SiON film in oxygen, with a thickness of 10 Å;
[0033] 3. Close O 2 Gas, and then replaced with NO gas, annealed in NO gas, so that a small amount of NO gas diffuses to the interface between silicon oxide and silicon, forming a SiON interface layer with a thickness of 10 Å;
[0034] 4. Turn off the NO gas and replace it with O 2 or N 2 gas, making the gate silicon oxide further in O 2 or N 2 Annealing in the gas for 50 seconds pushes the N element distributed on the silicon oxide-silicon interface away from the silicon surface by about 3 Å.
[0035] The nitrogen-containing gate silicon oxide layers prepared by the above examples all have good performance, which can effec...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com