Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Somatostatin prodrugs

a technology of somatostatin and prodrug, which is applied in the direction of pharmaceutical delivery mechanism, peptide/protein ingredient, peptide/protein ingredient, etc., can solve the problems of poor intestinal permeability of somatostatin, require parenteral administration, etc., and achieve the effect of increasing the bioavailability of somatostatin compound, increasing the hydrophobicity and permeability, and without losing activity

Active Publication Date: 2022-03-01
YISSUM RES DEV CO OF THE HEBREWUNIVERSITY OF JERUSALEM LTD
View PDF26 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0011]The present invention provides prodrugs of somatostatin and somatostatin derivatives that enables oral administration without losing activity or specificity. The prodrugs of the present invention contain moieties that mask charged groups of the peptide's sequence and increases its hydrophobicity and permeability through biological membranes and thus increase bioavailability of the somatostatin compound. According to the methods of the present invention, hydrophobic masking moieties are connected to the peptide's terminal and / or side chain via a cleavable linkage that allows selective removal and release of the active drug in the circulatory system or target tissue. None limiting examples of the present invention include Octreotide prodrugs having enhanced intestinal permeability via the transcellular pathway.
[0012]The major drawback of peptides in general and somatostatin derivatives specifically, as therapeutic entities is that they require parenteral administration due to their poor intestinal permeability that attributed mainly to the charged groups of their sequence. The present invention provides methods for improving passive membrane permeation of somatostatin compounds by providing prodrugs comprising masked ionizable (charged) functional groups. Masking of ionizable functional groups of a peptide sequence reduces the polarity and charge of a peptide, and together with the hydrophobic moiety attached improves its membrane permeability.
[0013]The invention thus provides compounds with increased oral availability while maintaining their activity in the target cells and tissues following transformation into active somatostatin forms.
[0014]Prodrugs according to the present invention are poorly active or inactive compounds containing the parental somatostatin that undergoes in vivo biotransformation through chemical or enzymatic cleavage, enabling the delivery of the active compound in an effective manner and amount thus overcoming pharmacokinetic, pharmacodynamic and toxicology challenges without permanently altering the pharmacological properties of the parental drug.
[0111]In some embodiments the somatostatin-based prodrug is devoid of positively charged nitrogen atoms. In some embodiments the somatostatin-based prodrug is devoid of electrically charged nitrogen atoms. In some embodiments the somatostatin-based prodrug is having a net neutral charge. In some embodiments the somatostatin-based prodrug is devoid of positively charged atoms. In some embodiments the somatostatin-based prodrug is devoid of charged atoms. In some embodiment and as understood by a person skilled in the art, the reaction of step (b) may be facilitated in the presence of a base. Without wishing to be bound by any theory or mechanism of action, the peptide of step (a) may include protonated nitrogen atoms. Consequently, said protonated nitrogen atoms may show very low nucleophilicity and tendency to react with the alkyl chloroformate. As a result, an added base may deprotonate the protonated nitrogen atoms of the starting peptide and facilitate the reaction.

Problems solved by technology

The major drawback of peptides in general and somatostatin derivatives specifically, as therapeutic entities is that they require parenteral administration due to their poor intestinal permeability that attributed mainly to the charged groups of their sequence.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Somatostatin prodrugs
  • Somatostatin prodrugs
  • Somatostatin prodrugs

Examples

Experimental program
Comparison scheme
Effect test

example 1

on of Octreotide Prodrug

[0224]The prodrug three hexyloxycarbonyl-octreotide (Octreotide-P) was synthesized from octreotide using the synthetic pathway shown in Scheme 1:

[0225]

example 2

of Somato8 (Peptide 8) and its Prodrug Somato8-P (Peptide 8-P)

[0226]In an effort to develop an improved somatostatin analog, a cyclic N-methylated hexapeptide somatostatin analog denoted “Peptide 8” was selected from a combinatorial library of all possible N-methylated analogs of the potent hexa-cyclic somatostatin analog c(PFwKTF) (SEQ ID NO: 7) [31]. Out of the 30 analogs synthesized, only seven analogs were found to have somatostatin receptor (SSTR) affinity similar to that of the parent peptide, that is, selectivity towards SSTR2 and SSTRS in the nanomolar range. From these seven analogs, one, named “Somato8” (previously “Peptide 8”), having the sequence c(PF(NMe)w(NMe)KT(NMe)F) (SEQ ID NO: 8), that contains three N-methylated amino acid residues, had the most promising PK parameters in vitro (including stability to intestinal enzymes and intestinal permeability). It was further investigated for its bioavailability following oral administration to rats compared to the parent seq...

example 3

Cyclic Somatostatin Analogs and their Prodrugs

[0238]In an attempt to identify novel somatostatin analogs, libraries of backbone cyclic peptides have been previously prepared with compounds having identical or highly similar sequences to the somatostatin pharmacophoric sequences. Four libraries, each containing 96 compounds, were synthesized and screened for their binding affinities to somatostatin receptors. Following the screening process, several candidates were further investigated for their metabolic stability and pharmacodynamic profile compared to SRIF and to octreotide. Some of the compounds are PTR-3046 (SEQ ID NO: 9) [28], PTR-3205 (SEQ ID NO: 10) [29] and PTR-3173 (SEQ ID NO: 3) [30] depicted in Scheme 3:

[0239]

[0240]All backbone cyclic analogs were found to be stable against enzymatic degradation in serum and renal homogenate. However, their biological activity and selectivity varied toward the somatostatin receptors: while PTR-3046 was found to be selective toward the SST...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
flow rateaaaaaaaaaa
surface areaaaaaaaaaaa
apical volumeaaaaaaaaaa
Login to View More

Abstract

The present invention provides prodrugs of somatostatin peptide and peptide analogs that are tissue permeable and oral bioavailable and enable activity of the somatostatin analog at the circulation or target tissue after cleavage of charge-masking lipophilic moieties. Pharmaceutical compositions comprising these prodrugs and their use in therapy and diagnosis are also provided.

Description

FIELD OF THE INVENTION[0001]The present invention relates to methods for improving the permeability and oral bioavailability of somatostatin derivatives, to somatostatin prodrugs and to their use in therapy.BACKGROUND OF THE INVENTION[0002]Somatostatin is a peptide hormone involved in many different biological functions. The native somatostatin (SRIF, somatotropin release inhibitory factor), was found to have a cyclic structure joined by an intramolecular disulfide bond between two cysteine residues. In the human body, it is present in two forms, as somatostatin-14 and somatostatin-28 (14 and 28 amino acids, respectively) [1]. Somatostatin has a broad spectrum of biological actions, exerts suppressive effects on a large variety of cells, and appears to be an endogenous growth inhibitor [2]. The SRIF binds with high affinity to five different subtypes of specific SRIF receptors (SSTRs) on the cell surface, which belong to the G-protein-coupled receptor family (SSTR1, SSTR2, SSTR3, SS...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Patents(United States)
IPC IPC(8): A61K38/00C07K7/64
CPCC07K7/64A61K38/00A61K38/31A61K9/0019A61K9/0053C07K14/6555
Inventor HOFFMAN, AMNONGILON, CHAIMKLINGER, ADINAOUM, JOHNNY
Owner YISSUM RES DEV CO OF THE HEBREWUNIVERSITY OF JERUSALEM LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products