Selectively cross-linked polyethylene orthopedic devices

a cross-linked polyethylene and orthopedic technology, applied in the direction of prosthesis, other domestic articles, joint implants, etc., can solve the problems of difficult balance to obtain, inability to easily form easily by inexpensive injection molding techniques, and inability to achieve the effect of improving wear resistan

Inactive Publication Date: 2005-05-26
HOWMEDICA OSTEONICS CORP
View PDF38 Cites 12 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0009] The present invention provides methods of producing selectively cross-linked polyethylene orthopedic devices. Specifically, the invention provides a localized and controlled cross-linking method used to produce orthopedic implant prosthesis having improved wear characteristics. The localized and controlled degree of cross-linking is accomplished by exposing a polyethylene object or pre-formed orthopedic prosthetic joint or limb bearing surface to an interrupted, masked or pulsed radiation source. The interrupted radiation source may be accomplished by various means, all of which limit the amount of radiation ultimately contacting the object. By interrupting or limiting the radiation exposure to certain sites on the polyethylene object or prosthetic device, cross-linking only occurs where the radiation is able to contact or penetrate the object. Other areas not so contacted with the radiation either do not become cross-linked or only peripherally so. The invention therefore, allows a technician not only to control where the cross-linking will take place within or on the surface of a workpiece, but also the degree to which the polymer ultimately becomes cross-linked. By limiting or selectively cross-linking the polymeric device, one can impart specific desirable properties to the polymer not normally present in the raw polymer or in the fully cross-linked polymer of the prior art.
[0016] Another object of the invention is to provide a pulsed radiation beam, thereby limiting the degree of radiation ultimately contacting the workpiece.
[0018] It is yet another aspect of the invention to provide a method whereby the workpiece is preferably completely surrounded by an interrupting means, preferably a perforated cage, whereby a preferably plurality of radiation sources are directed to the workpiece from various directions to provide an all-encompassing and uniform radiation exposure to the workpiece.

Problems solved by technology

Improving wear resistance without losing strength or causing oxidative degradation is a difficult balance to obtain.
Another difficulty conventionally encountered in the manufacturing process of polymeric components of ball and socket or bearing-type prosthetic medical devices, such as hips, knees, and other load-bearing joints, is that they cannot be formed easily by inexpensive injection molding techniques.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Selectively cross-linked polyethylene orthopedic devices
  • Selectively cross-linked polyethylene orthopedic devices
  • Selectively cross-linked polyethylene orthopedic devices

Examples

Experimental program
Comparison scheme
Effect test

example

[0062] Several shields were produced from a {fraction (3 / 8)} inch thick steel plate for selective cross-linking treatment of UHMWPE. The overall top surface size for each plate was approximately 5 inches by 5 inches square. Each shield was perforated with a series of 3 mm diameter holes in a geometric arrangement such that each perforation (hole) was equally spaced from all other perforations. One pattern involved 30% porosity or perforation. That is, 30% of the top surface area of the shield was occupied by holes uniformly distributed over the surface of the shield. These parameters (3 mm hole size, equal spacing and 30% surface area) control the total number of holes as well as the inter-hole spacing. An additional shield used a 20% surface area pattern and a third used a 10% pattern.

[0063] A 3.25 inch diameter cylindrical rod of UHMWPE material was sectioned into 1.75 inch thick pieces or “pucks”. This rod was made of GUR 1050 resin and was not treated or cross-linked in any way...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
elongationaaaaaaaaaa
elongationaaaaaaaaaa
elongationaaaaaaaaaa
Login to view more

Abstract

An improved prosthetic medical device having improved wear resistance and toughness is provided in the present application. A method is provided to selectively cross-link the polymeric matrix comprising the medical device by employing an interrupting means such as a mask, wire mesh or chopper wheel placed in between the medical device and irradiation source. In addition, the medical device may be translated while being irradiated to further effect the selective cross-linking. The present invention also provides for an injection molding process wherein a prosthetic medical device is formed in a single step, then selectively cross-linked.

Description

CROSS REFERENCE [0001] This is a continuation application of U.S. patent application Ser. No. 10 / 094,789, filed Mar. 11, 2002, which claims the benefit of U.S. patent application Ser. No. 09 / 553,503, filed Apr. 20, 2000, which claims the benefit of Provisional Application No. 60 / 130,322, filed Apr. 21, 1999, the disclosures of which are incorporated herein by reference.FIELD OF THE INVENTION [0002] This invention relates generally to producing prosthetic medical devices. More specifically, the invention provides methods to produce compositions made of polyethylene which have been irradiated in such a manner so that only a selected percentage of the overall composition has been allowed to cross-link. The capability to precisely control the degree and location of cross-linking in a polymer has particular advantages in the orthopedic device arts. BACKGROUND OF THE INVENTION [0003] Many prosthetic medical devices are implanted into load-bearing joints such as knees, hips, etc. As such, ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): A61F2/00A61F2/30A61L27/00A61L27/16B29C35/02B29C35/08B29C67/00B29K23/00B29L31/48C08J7/00C08L23/06
CPCA61F2/30A61F2/3094B29L2031/7532A61F2002/30004A61F2250/0014A61L27/16B29C35/0266B29C35/08B29C2035/0844B29C2035/085B29C2035/0877B29K2023/065B29K2023/0675B29K2023/0683B29K2105/0088B29K2995/0087C08L23/06
Inventor WANG, AIGUOESSNER, AARON PAULZARNOWSKI, ALFRED J.
Owner HOWMEDICA OSTEONICS CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products