Austenitic stainless steel for hydrogen gas and method for its manufacture

Inactive Publication Date: 2006-08-31
SUMITOMO METAL IND LTD
View PDF5 Cites 24 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0044] In this manner, according to the present invention, it is possible to obatin a high strength austenitic stainless steel which does not undergo hydrogen embrittlement even in a high pressure hydrogen gas environment such as 70 MPa or above and which does

Problems solved by technology

In actual practice, elongation of at least about 30% is desirable, but when the degree of cold working is large, a decrease in elongation becomes a problem.
A

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Austenitic stainless steel for hydrogen gas and method for its manufacture
  • Austenitic stainless steel for hydrogen gas and method for its manufacture
  • Austenitic stainless steel for hydrogen gas and method for its manufacture

Examples

Experimental program
Comparison scheme
Effect test

Example

BEST FORM FOR CARRYING OUT THE INVENTION

[0051] The chemical composition of an austenitic stainless steel according to the present invention and the reasons for limits thereon will be explained below in detail. In this specification, percent with respect to the chemical composition of steel means mass percent unless otherwise specified.

[0052] The content of C is made at most 0.10%. In an austenitic stainless steel, there are often cases in which corrosion resistance is increased by precipitation of M23C6-type carbides (M is Cr, Mo, Fe, or the like) or MC-type carbides (M is Ti, Nb, Ta, or the like), but in a steel according to the present invention, precipitation of carbides is not mandatory. Rather, there are cases in which precipitation at grain boundaries has an adverse effect on toughness and the like after cold working. Thus, C is limited to at most 0.10%. The lower the content of C the better, and preferably it is at most 0.04%. Taking into consideration refining costs, it is...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Temperatureaaaaaaaaaa
Fractionaaaaaaaaaa
Fractionaaaaaaaaaa
Login to view more

Abstract

An austenitic stainless steel for use in a hydrogen gas atmosphere comprises, in mass %, C: 0.10% or less, Si: 1.0% or less, Mn: 0.01 to 30%, P: 0.040% or less, S: 0.01% or less, Cr: 15 to 30%, Ni: 5.0 to 30%, Al: 0.10% or less, N: 0.001 to 0.30 % with the balance Fe and inevitable impurities. An X-ray (111) integration intensity of a cross section along the direction rectangular to the working direction is five times that in a random direction or less, and the X-ray integration intensity ratio of a cross section along the working direction satisfies I(220)/I(111)≦10. The high strength steel can also contain one or more of the groups of Mo and W; V, Nb, Ta, Ti, Zr and Hf; B; Cu and Co; Mg, Ca, La, Ce, Y, Sm, Pr and Nd.

Description

TECHNICAL FIELD [0001] This invention relates to a stainless steel for use in a hydrogen gas environment which has excellent mechanical properties (strength and ductility) and corrosion resistance and to a method for its manufacture. In addition, the present invention relates to equipment used in a hydrogen gas environment such as piping, gas cylinders, and valves for hydrogen gas made from such a stainless steel. [0002] A stainless steel according to the present invention is particularly suitable as a steel for structural equipment which is exposed to a high pressure hydrogen gas environment in fuel cell automobiles and hydrogen gas stations, and particularly for piping, gas cylinders, and valves. BACKGROUND ART [0003] As is well known, fuel cell automobiles obtain electric power using hydrogen and oxygen as fuels. They have attracted attention as the next generation of clean automobiles which do not discharge carbon dioxide (CO2) or harmful substances such as nitrogen oxides (NOx)...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): C22C38/44C21D8/00C22C38/00C22C38/58
CPCC22C38/001C22C38/02C22C38/44C22C38/58Y02E60/32
Inventor SEMBA, HIROYUKIIGARASHI, MASAAKIOMURA, TOMOHIKOMIYAHARA, MITSUOOGAWA, KAZUHIKO
Owner SUMITOMO METAL IND LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products