Fuel cell

Active Publication Date: 2013-04-11
TOYOTA JIDOSHA KK
View PDF2 Cites 6 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

This patent relates to a fuel cell system and method that removes water from a cathode catalyst layer in the fuel cell before cooling it, to prevent water from being frozen and damaging the fuel cell. The technical effects of this invention include increased efficiency and reliability of fuel cell systems in cold environments and reduced likelihood of damage to the fuel cell caused by freezing.

Problems solved by technology

This may lead to significant degradation of the MEA.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Fuel cell
  • Fuel cell
  • Fuel cell

Examples

Experimental program
Comparison scheme
Effect test

first embodiment

A. First Embodiment

A-1. Configuration of Fuel Cell System

[0042]FIG. 1 illustrates the configuration of a fuel cell system 10. The fuel cell system 10 includes a fuel cell 20 configured to generate electric power through the electrochemical reaction of reactive gases and operates the fuel cell 20 to supply the generated electric power to outside of the fuel cell system 10. According to this embodiment, the fuel cell 20 of the fuel cell system 10 is a polymer electrolyte fuel cell and uses a hydrogen-containing fuel gas and an oxygen-containing oxidizing gas as the reactive gases. The fuel cell system 10 is applied to a system mounted on a vehicle that drives with the electric power generated by the fuel cell 20 according to this embodiment but may also be applicable to a system installed as the power source in a house or a facility and a system incorporated as the power source in electric machine equipment operated with electric power according to other embodiments.

[0043]The fuel cel...

second embodiment

B. Second Embodiment

[0080]The configuration of the fuel cell system 10 according to a second embodiment is similar to that of the first embodiment, except the flow direction of the oxidizing gas in the cathode flow channels 245 during the purge process (step S145). FIG. 8 illustrates the flow directions of the reactive gases according to the second embodiment. More specifically, FIG. 8 shows the flow directions of the reactive gases during ordinary power generation and the flow directions of the reactive gases during the purge process (step S145). During power generation by the fuel cell 20, the flow direction of the hydrogen gas in the anode flow channels 235 is downward along the direction of gravity, i.e., in the same direction as the direction of gravitational force G, while the flow direction of the oxidizing gas in the cathode flow channels 245 is upward along the direction of gravity, i.e., in the opposite direction to the direction of gravitational force G. During the purge ...

third embodiment

C. Third Embodiment

[0082]The configuration of the fuel cell system 10 according to a third embodiment is similar to that of the first embodiment, except the detailed operation of the water removal process (step S140). FIG. 9 is a flowchart showing the details of the water removal process (step S140) according to the third embodiment. The water removal process (step S140) of the third embodiment is similar to that of the first embodiment, except the method of removing the retaining water from the cathode catalyst layer 217. On the start of the water removal process (step S140), the drive controller 910 provides direction to the hydrogen gas supply / discharge system 30 on increasing the stoichiometric ratio of the hydrogen gas in order to increase the amount of water moving from the cathode catalyst layer 217 toward the anode catalyst layer 214 (step S146), while continuing power generation of the fuel cell 20. The stoichiometric ratio of the hydrogen gas represents the ratio of the am...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A fuel cell system 10 removes water retaining in a cathode catalyst layer 217 in a fuel cell 20, after a start-up of the fuel cell 20 and before feed of coolant to the fuel cell 20.

Description

TECHNICAL FIELD[0001]The present invention relates to a fuel cell that generates electric power through the electrochemical reaction of hydrogen with oxygen and more specifically to a technique of operating the fuel cell in a cold environment.BACKGROUND ART [0002]The fuel cell is known to have the stack structure obtained by alternately stacking a plurality of membrane electrode assemblies (hereinafter referred to as “MEA”), wherein each MEA includes electrode layers formed on respective surfaces of an electrolyte membrane, and separators that separate adjacent membrane electrode assemblies. Each of the separators in the fuel cell has a flow channel configured to make a flow of hydrogen gas toward an anode side of the MEA, a flow channel configured to make a flow of an oxidizing gas toward a cathode side of the MEA and a flow channel configured to make a flow of a coolant for cooling down the fuel cell. During power generation by the fuel cell, water is produced on the cathode side ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): H01M8/04
CPCH01M8/04029H01M8/04156H01M8/04223H01M8/04291H01M2008/1095Y02E60/50H01M8/04253H01M8/0258H01M8/0267H01M8/04225H01M8/04302H01M8/2483
Inventor USAMI, SHOARAKI, YASUSHISHIBATA, KAZUNORIKAWAHARA, SHUYAOGAWA, TOMOHIRO
Owner TOYOTA JIDOSHA KK
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products