Parametric system for risk sharing of critical illness risks and corresponding method thereof

a risk sharing and risk technology, applied in the field of parametric system for risk sharing of critical illness risks, can solve the problems of many systems failing to take over risk transfer, suffering from high blood pressure, etc., and achieve the effect of improving operational and financial stability of the system, improving diagnosis or treatment, and improving system stability

Active Publication Date: 2015-04-23
SWISS REINSURANCE CO LTD
View PDF1 Cites 8 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0010]In one embodiment variant, the receiving and preconditioned storage of payments from risk exposure components for the pooling of their risks is dynamically determined based on total risk and / or the likelihood of the risk exposure of the pooled risk exposure components. This embodiment variant has, inter alia, the advantage that the operation of the resource-pooling system can be dynamically adapted to changing conditions of the pooled risk, as, for example, changing demographic conditions or changing age distributions or the like of the pooled risk components. A further advantage is that the system needs no manual adaption, when it is operated in different environments, places or countries, because the size of the payments of the risk exposure components is directly related to the totally pooled risk.
[0011]In another embodiment variant, the number of pooled risk exposure components is dynamically adapted, by means of the resource-pooling system, to a range where non-covariant occurring risks covered by the resource-pooling system affect only a relatively small proportion of the total pooled risk exposure components at a given time. This variant has, inter alia, the advantage that the operational and financial stability of the system can be improved.
[0012]In a further embodiment variant, the critical illness triggers are dynamically adapted by means of an operating module based on time-correlated incidence data for a critical illness condition and / or diagnosis or treatment conditions indicating improvements in diagnosis or treatment. This variant has, inter alia, the advantage that improvements in diagnosis or treatment can be dynamically captured by the system and dynamically affect the overall operation of the system based on the total risk of the pooled risk exposure components.
[0013]In yet another embodiment variant, the first, second and third parametric payment are leveled by a predefined total payment sum determined at least based on the risk-related component data and / or on the likelihood of the risk exposure for one or a plurality of the pooled risk exposure components based on the risk-related component data, and wherein the first parametric payment that is transferred is up to 30% of said total payment sum, and the second parametric payment that is transferred is up to 50% of said total payment sum, and the third parametric payment that is transferred is up to the left over part given by said total payment sum, minus the actual first parametric payment and the second parametric payment. The predefined total payments can e.g. be leveled to any appropriate lump sum, such as, for example, $50,000 up to $500,000, or any other sum related to the total transferred risk and the amount of the periodic payments of the risk exposure component. As embodiment variant of the realization of the system, the critical illness trigger e.g. can comprise multi-dimensional trigger channels, wherein each of said trigger-flags is assigned to a first dimension trigger channel, comprising a first trigger-level triggering occurrence parameters of the critical illness, a second trigger-level triggering acute treatment phase parameters, and a third trigger-level triggering recovery phase parameters associated with terminal prognosis data, and each of said trigger-flags is assigned to at least a second or higher dimension trigger channel, and comprises additional trigger-stages based on the first, second and / or third trigger-level of the first dimension trigger channel. As a further variant, the critical illness trigger can also comprise multi-dimensional trigger channels, wherein each of said trigger-flags is assigned to a first dimension of a trigger channels comprising a first trigger-level relative to triggering occurrence parameters of the critical illness, a second trigger-level relative to triggering acute treatment phase parameters, and a third trigger-level relative to triggering recovery phase parameters associated with terminal prognosis data, and each of said trigger-flags is assigned to a second dimension of trigger channels comprising a first trigger-level triggering on a first stage of progression-measuring parameters of the occurred critical illness, and one or more higher trigger-levels triggering on higher stages of progression-measuring parameters of the occurred critical illness. This variant, inter alia, has the advantage that the draw-down payments or the payments of predefined amounts, which depend on the first, second or third trigger level, i.e. the different stages of triggers, allow for an adapted payment of the total sum that is dependent on the stage of the critical illness, as triggered by the system.
[0014]In one embodiment variant, a periodic payment transfer from the risk exposure components to the resource pooling system via a plurality of payment receiving modules is requested by means of a monitoring module of the resource-pooling system, wherein the risk transfer or protection for the risk exposure components is interrupted by the monitoring module when the periodic transfer is no longer detectable by means of the monitoring module. As a variant, the request for periodic payment transfer can be interrupted automatically or waived by means of the monitoring module, when the occurrence of indicators for critical illness is triggered in the patient data flow pathway of a risk exposure component. These embodiment variants have, inter alia, the advantage that the system allows for a further automation of the monitoring operation, especially of its operation with regard to the pooled resources.
[0015]In a further embodiment variant, an independent verification critical illness trigger of the resource pooling system is activated in cases of a triggering of the occurrence of indicators for critical illness in the patient data flow pathway of a risk exposure component by means of the critical illness trigger and wherein the independent verification critical illness trigger additionally is triggering for the occurrence of indicators regarding critical illness in an alternative patient data flow pathway with independent measuring parameters from the primary patient data flow pathway in order to verify the occurrence of the critical illness at the risk exposure component. As a variant, the parametric draw-down transfer of payments is only assigned to the corresponding trigger-flag, if the occurrence of the critical illness at the risk exposure component is verified by the independent verification critical illness trigger. These embodiment variants have, inter alia, the advantage that the operational and financial stability of the system can thus be improved. In addition, the system is rendered less vulnerably relative to fraud and counterfeit.

Problems solved by technology

However, many systems fail to take over risk transfers if the individual suffered from the insured condition, before the risk transfer was activated (this is known as the Pre-Existing Condition Exclusion), or because the individual suffered from a condition that led to a claim under the insured illness—for example, it was known that an individual suffered from high blood pressure before the risk transfer being activated, and suffered a stroke after the risk transfer had been activated.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Parametric system for risk sharing of critical illness risks and corresponding method thereof
  • Parametric system for risk sharing of critical illness risks and corresponding method thereof
  • Parametric system for risk sharing of critical illness risks and corresponding method thereof

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0022]FIG. 1 illustrates, schematically, an architecture for a possible implementation of an embodiment of the parametric, event-driven resource-pooling system 1 for risk sharing of critical illness risks. In FIG. 1, reference numeral 1 refers to the resource-pooling system for risk sharing of the risk exposure components 21, 22, 23 . . . The resource-pooling system 1 provides a dynamic self-sufficient risk protection and corresponding risk protection structure for a variable number of risk exposure components 21, 22, 23, i.e.; persons or individuals, by its means. The system 1 includes at least one processor and associated memory modules. The system 1 can also include one or more display units and operating elements, such as a keyboard, and / or graphical pointing devices as a computer mouse. The resource-pooling system 1 is a technical device comprising electronic means that can be used by service providers in the field of risk transfer or insurance technology for risk transfer rela...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

Proposed are a parametric, event-driven critical illness insurance system based on a resource-pooling system (1) and method for risk sharing of critical illness risks of a variable number of risk exposure components (21, 22, 23) by providing a dynamic self-sufficient risk protection for the risk exposure components (21, 22, 23) by means of the resource-pooling system (1). The resource-pooling system (1) comprises an assembly module (5) to process risk-related component data (211,221,231) and to provide the likelihood (212, 222, 232) of said risk exposure for one or a plurality of the pooled risk exposure components (21, 22, 23, . . . ) based on the risk-related component data (211, 221, 231). The risk exposure components (21,22,23) are connected to the resource-pooling system (1) for the pooling of their risks and resources, and wherein the resource-pooling system (1) comprises an multiple event-driven core-engine (3) with critical illness triggers (31, 32, 33) triggering in a patient dataflow pathway (213,223,233) to provide risk protection for a specific risk exposure component (21,22,23). The operation of the resource pooling system (1) is further supported by a parametric risk-cover related to multiple occurrences of critical illness parameters 71,72,73 triggered in the related patient data flow pathway (213, 223, 233).

Description

FIELD OF THE INVENTION[0001]The present invention relates to resource-pooling systems for providing risk sharing of critical illness risks of a variable number of risk exposure components by providing a dynamic self-sufficient risk protection for the risk exposure components by means of the critical illness insurance system. In particular, the invention relates to automated event-driven systems triggering on the patient dataflow pathway.BACKGROUND OF THE INVENTION[0002]These days, there is significant risk exposure related to many aspects in life and non-life sectors. Risk exposed units as any kinds of objects, individuals, corporate bodies and / or legal entities, necessarily are confronted with many forms of active and passive risk management to hedge and protect against the risk of certain losses and events. In the prior art, one way to address such risk of loss is based on transferring and pooling the risk of loss from a plurality of risk exposed entities to a dedicated pooling en...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): G06Q40/08G06F19/00
CPCG06F19/3431G06Q40/08G16H50/30
Inventor KNAUST, TIMOTHY JOHNFERGUSON, DAVID THOMASPLEWS, NICOLADOTT, ALAN JAMESPATTERSON, HELEN ELIZABETH CHUNG
Owner SWISS REINSURANCE CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products