Hydrolysis resistant polyester films

a polyester film, hydrolysis resistant technology, applied in the field of polymer films, can solve the problems of reducing the intrinsic viscosity of the polymer, poor hydrolysis resistance, deterioration of one or more, etc., to improve the hydrolysis stability, improve product performance, and dissipate hea

Inactive Publication Date: 2015-06-04
DUPONT TEIJIN FILMS U S LLP
View PDF16 Cites 10 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0043]Surprisingly improved product performance was also observed using process route (5), again in terms of improved hydrolytic stability.
[0044]In one embodiment, the film may further a UV-absorber. The UV-absorber has an extinction coefficient much higher than that of the polyester such that most of the incident UV light is absorbed by the UV-absorber rather than by the polyester. The UV-absorber generally dissipates the absorbed energy as heat, thereby avoiding degradation of the polymer chain, and improving the stability of the polyester to UV light. Typically, the UV-absorber is an organic UV-absorber, and suitable examples include those disclosed in Encyclopaedia of Chemical Technology, Kirk-Othmer, Third Edition, John Wiley & Sons, Volume 23, Pages 615 to 627. Particular examples of UV-absorbers include benzophenones, benzotriazoles (U.S. Pat. No. 4,684,679, U.S. Pat. No. 4,812,498 and U.S. Pat. No. 4,681,905), benzoxazinones (U.S. Pat. No. 4,446,262, U.S. Pat. No. 5,251,064 and U.S. Pat. No. 5,264,539) and triazines (US-3244708, U.S. Pat. No. 3,843,371, U.S. Pat. No. 4,619,956, U.S. Pat. No. 5,288,778 and WO 94 / 05645). The UV-absorber may be incorporated into the film according to one of the methods described herein. In one embodiment, the UV-absorber may be chemically incorporated in the polyester chain. EP-A-0006686, EP-A-0031202, EP-A-0031203 and EP-A-0076582, for example, describe the incorporation of a benzophenone into the polyester. The specific teaching of the aforementioned documents regarding UV-absorbers is incorporated herein by reference. In a particularly preferred embodiment, improved UV-stability in the present invention is provided by triazines, more preferably hydroxyphenyltriazines, and particularly hydroxyphenyltriazine compounds of formula (II):
[0045]The amount of UV-absorber is preferably in the range from 0.1% to 10%, more preferably 0.2% to 7%, more preferably 0.6% to 4%, particularly 0.8% to 2%, and especially 0.9% to 1.2% by weight, relative to the total weight of the film.
[0046]The film preferably also comprises an anti-oxidant. A range of antioxidants may be used, such as antioxidants which work by trapping radicals or by decomposing peroxide. Suitable radical-trapping antioxidants include hindered phenols, secondary aromatic amines and hindered amines, such as Tinuvin™ 770 (Ciba-Geigy). Suitable peroxide-decomposing antioxidants include trivalent phosphorous compounds, such as phosphonites, phosphites (e.g. triphenyl phosphate and trialkylphosphites) and thiosynergists (e.g. esters of thiodipropionic acid, such as dilauryl thiodipropionate). Hindered phenol antioxidants are preferred. A particularly preferred hindered phenol is tetrakis-(methylene 3-(4′-hydroxy-3′,5′-di-t-butylphenyl propionate) methane, which is commercially available as Irganox™ 1010 (Ciba-Geigy). Other suitable commercially available hindered phenols include Irganox™ 1035, 1076, 1098 and 1330 (Ciba-Geigy), Santanox™ R (Monsanto), Cyanox™ antioxidants (American Cyanamid) and Goodrite™ antioxidants (BF Goodrich). The concentration of antioxidant present in the polyester film is preferably in the range from 50 ppm to 5000 ppm of the polyester, more preferably in the range from 300 ppm to 1500 ppm, particularly in the range from 400 ppm to 1200 ppm, and especially in the range from 450 ppm to 600 ppm. A mixture of more than one antioxidant may be used, in which case the total concentration thereof is preferably within the aforementioned ranges. Incorporation of the antioxidant into the polyester may be effected by conventional techniques, and preferably by mixing with the monomeric reactants from which the polyester is derived, particularly at the end of the direct esterification or ester exchange reaction, prior to polycondensation.
[0047]The film may further comprise any other additive conventionally employed in the manufacture of polyester films. Thus, agents such as cross-linking agents, dyes, fillers, pigments, voiding agents, lubricants, radical scavengers, thermal stabilisers, flame retardants and inhibitors, anti-blocking agents, surface active agents, slip aids, gloss improvers, prodegradents, viscosity modifiers and dispersion stabilisers may be incorporated as appropriate. Such components may be introduced into the polymer in a conventional manner. For example, by mixing with the monomeric reactants from which the film-forming polymer is derived, or the components may be mixed with the polymer by tumble or dry blending or by compounding in an extruder, followed by cooling and, usually, comminution into granules or chips. Masterbatching technology may also be employed.
[0048]The film may, in particular, comprise a particulate filler which can improve handling and windability during manufacture, and can be used to modulate optical properties. The particulate filler may, for example, be a particulate inorganic filler (e.g. metal or metalloid oxides, such as alumina, titania, talc and silica (especially precipitated or diatomaceous silica and silica gels), calcined china clay and alkaline metal salts, such as the carbonates and sulphates of calcium and barium). Any inorganic filler present should be finely-divided, and the volume distributed median particle diameter (equivalent spherical diameter corresponding to 50% of the volume of all the particles, read on the cumulative distribution curve relating volume % to the diameter of the particles—often referred to as the “D(v, 0.5)” value) thereof is preferably in the range from 0.01 to 5 μm, more preferably 0.05 to 1.5 μm, and particularly 0.15 to 1.2 μm. Preferably at least 90%, more preferably at least 95% by volume of the inorganic filler particles are within the range of the volume distributed median particle diameter±0.8 μm, and particularly ±0.5 μm. Particle size of the filler particles may be measured by electron microscope, coulter counter, sedimentation analysis and static or dynamic light scattering. Techniques based on laser light diffraction are preferred. The median particle size may be determined by plotting a cumulative distribution curve representing the percentage of particle volume below chosen particle sizes and measuring the 50th percentile.

Problems solved by technology

However, polyester films are susceptible to hydrolytic degradation, which results in a reduction in the intrinsic viscosity of the polymer, and a consequent deterioration in one or more of the afore-mentioned desirable properties of the film, particularly the mechanical properties.
Poor hydrolysis resistance is a particular problem when the film is used under humid conditions and / or elevated temperatures and / or in exterior applications, such as in photovoltaic (PV) cells.
For instance, the addition of carbodiimides as end-capping agents in polyester compositions was proposed in US-5885709 and EP-0838500, amongst others, but such additives have a tendency to emit harmful gaseous by-products.
One of the problems associated with the incorporation of hydrolysis stabilisers into polyester films is that while increasing the concentration of the additive improves the hydrolysis resistance, it does so at the expense of a reduction in the melting point and a deterioration in the mechanical properties of the polyester film.
One of the consequences of a reduction in mechanical properties is that the processability of the filmed polyester becomes poor, and breakage of the film web occurs during manufacture and subsequent processing.
Another problem with the use in the prior art polyester films of hydrolysis stabilisers based on epoxidised fatty acids, particularly epoxidised fatty acid glycerides, is that such additives have a tendency to decompose during film manufacturing and processing with evolution of acrolein, a highly toxic, flammable and foul-smelling substance.
An additional problem with the known hydrolysis stabilisers, particularly those based on certain epoxidised fatty acid glycerides and multi-functional glycidyl compounds, is the reduction of film quality and processability when such additives are incorporated into the film in an amount effective to provide improved hydrolysis resistance.
In particular, such additives induce profile defects and unacceptable levels of die-lines in polyester films, i.e. poor uniformity in thickness and / or light transmission across the film web, and the extrudate can become impossible to process on a film-line because of breakage of the film web.
It is believed that such problems are at least partly attributable to cross-linking and gel formation, which interferes with the stretching process experienced by the film during its manufacture.
A further problem with using multi-functional glycidyl compounds as hydrolysis stabilisers for PET is that their higher rate of chain extension of the polyester increases melt viscosity, which in turn reduces the extrusion output at a given temperature, and this is economically undesirable.
While viscosity could theoretically then be reduced by increasing melt temperatures, this would lead to increased rates of degradation of the polymer and hydrolysis stabiliser and cause gel formation.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Hydrolysis resistant polyester films
  • Hydrolysis resistant polyester films
  • Hydrolysis resistant polyester films

Examples

Experimental program
Comparison scheme
Effect test

examples

Control 1

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
temperatureaaaaaaaaaa
temperaturesaaaaaaaaaa
heat-set aaaaaaaaaa
Login to view more

Abstract

A biaxially oriented polyester film comprising polyester and at least one hydrolysis stabiliser selected from a glycidyl ester of a branched monocarboxylic acid, wherein the monocarboxylic acid has from 5 to 50 carbon atoms, wherein said hydrolysis stabiliser is present in the film in the form of its reaction product with at least some of the end-groups of said polyester, and wherein said reaction product is obtained by the reaction of the hydrolysis stabiliser with the end-groups of the polyester in the presence of a metal cation selected from the group consisting of Group I and Group II metal cations.

Description

[0001]This application is a continuation of U.S. application Ser. No. 14 / 003,676, filed 15 Nov. 2013, which is a National Phase filing of International Application No. PCT / GB2012 / 000224, filed 7 Mar. 2012, and which claims priority of GB Application No. 1103855.1, filed 7 Mar. 2011, and U.S. Provisional Application No. 61 / 449,897, filed 7 Mar. 2011, the entireties of which applications are incorporated herein by reference for all purposes.FIELD OF THE INVENTION[0002]The present invention is concerned with polyester films, particularly polyethylene terephthalate (PET) films, which exhibit improved hydrolysis resistance, and with a process for the production thereof.BACKGROUND OF THE INVENTION[0003]The advantageous mechanical properties, dimensional stability and optical properties of polyester films are well-known. However, polyester films are susceptible to hydrolytic degradation, which results in a reduction in the intrinsic viscosity of the polymer, and a consequent deterioration ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): B29C47/00C08G63/91B29D7/01B29C48/08B29C48/18
CPCB29C47/0021B29K2067/003C08G63/916B29D7/01C08G63/914C08J5/18C08J2367/02Y02E10/52H01L31/049H01L31/056C08K3/22C08L33/02C08K3/013C08K3/014Y10T428/31786C08L67/02C08K5/1515B29C48/08B29C48/18B29C48/0018C08G63/91C08L67/00C08K5/10H01L31/048B29K2067/00C08J3/201C08J2367/03B32B2307/402B32B2367/00B32B2307/712B32B37/153B32B2307/412B32B27/08B32B2307/41B32B2250/03B32B27/18B32B2457/12B32B27/36B32B37/15B32B2250/244B32B2250/02B32B2307/50H01L21/64
Inventor BRENNAN, WILLIAM J.MORTLOCK, SIMON VERNONGOLDIE, WILLIAM BRYDENASHFORD, EMMAFORSYTH, KRISTIN JAYNETURNER, DAVID R.LOVATT, ALLAN
Owner DUPONT TEIJIN FILMS U S LLP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products