Method for producing porous silicone sheet, frozen body, and porous silicone sheet rolled-body

Inactive Publication Date: 2018-03-15
NITTO DENKO CORP
View PDF1 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0012]According to the production method of the present invention, a frozen body obtained by freezing a wet gel is formed into a sheet to obtain a porous silicone sheet. The porous silicone sheet is thinned. Therefore, impurities in the sheet can be satisfactorily removed by cleaning. Furthermore, the wet gel is frozen. Therefore, fracture by its weight o

Problems solved by technology

However, in those porous bodies, elastic modulus of a gel is extremely low, and brittleness is high as a w

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method for producing porous silicone sheet, frozen body, and porous silicone sheet rolled-body
  • Method for producing porous silicone sheet, frozen body, and porous silicone sheet rolled-body
  • Method for producing porous silicone sheet, frozen body, and porous silicone sheet rolled-body

Examples

Experimental program
Comparison scheme
Effect test

Example

Example 1

[0069]n-Hexadecyltrimethylammonium chloride (10 g) as a surfactant and urea (50 g) were added to 5 mM acetic acid aqueous solution (150 mL), followed by mixing those in a glass vessel under stirring.

[0070]Methyl trimethoxysilane (30 mL) and dimethyl dimethoxysilane (20 mL) as precursors were added to the glass vessel, followed by stirring with a stirrer for 60 minutes. After stirring, the resulting solution was transferred to a cylindrical closed vessel, and heated at 80° C. for 24 hours, thereby hydrolyzing urea to form basic conditions. The precursors hydrolyzed were polycondensed by a sol-gel reaction under the basic conditions.

[0071]The wet gel (swallen gel) obtained was allowed to stand in a freezer of −10° C. for 5 hours in the state of placing the wet gel in the vessel, and formed into a frozen state. The cylindrical wet gel in a frozen state was taken out of the vessel, a mandrel was driven into the cylindrical wet gel along a center axis thereof, and the cylindrica...

Example

Example 2

[0072]A porous silicone body formed into a sheet in a roll form (rolled-body of a porous silicone sheet) was obtained under the same conditions as in Example 1, except that cleaning by FV cleaning method (a method in which a chrysanthemum type rotor rotates in punching metal roll to generate water flow in an opening part of the punching metal roll, and an object to be cleaned is brought into contact with the water flow to perform cleaning, number of revolution of chrysanthemum type rotor: 450 rpm, cleaning liquid: water, water temperature: 25° C., path length: 10 m) was conducted as the cleaning step. Similar to Example 1, as a result of measuring an apparent specific density of the porous silicone body prepared, it was a normal numerical value of 0.09 g / cc, and it was confirmed that impurities could be appropriately removed.

Example

Comparative Example 1

[0073]The wet gel prepared by the method described in Example 1 was allowed to stand and dried in an oven at 70° C. for 24 hours in the state that the gel was placed in the vessel to obtain a porous silicone body. As a result of measuring an apparent specific gravity of the porous silicone body obtained, it was 0.30 g / cc. This value exceeded a normal numerical value (0.15 g / cc or less) of an apparent specific gravity of a porous silicone body prepared in an appropriate manner, and this fact suggested that impurities remain. Furthermore, as a result of measuring a water contact angle (5 μL), water droplets permeated. It was confirmed from this that impurities derived from a surfactant remain. (In case where impurities were normally removed, water droplets do not permeate, and water repellency of a water contact angle of 140° or more is shown).

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The present invention provides a method for producing a porous silicone sheet comprising a freezing step of freezing a wet gel of a porous silicone body having communicating pores and a three-dimensional network silicone skeleton which forms the pores and which is formed by a copolymerization of a bifunctional alkoxysilane and a trifunctional alkoxysilane, to obtain a frozen body, a sheet forming step of forming the frozen body into a sheet to obtain a porous silicone sheet, and a cleaning step of cleaning the porous silicone sheet. According to the method of the present invention, a porous silicone body from which impurities have been sufficiently removed can be produced. In the course of the production, occurrence of fracture of a wet gel can be effectively prevented.

Description

TECHNICAL FIELD[0001]The present invention relates to a method for producing a porous silicone sheet, frozen body, and a porous silicone sheet rolled-body.BACKGROUND ART[0002]A sol-gel reaction involving phase separation has conventionally been known as a method for obtaining a monolithic porous material having continuous though-holes with controlled sizes in an organic-inorganic hybrid system using an oxide such as silica or titania, and a trifunctional alkoxysilane as starting materials (see Patent Documents 1 and 2). However, in those porous bodies, elastic modulus of a gel is extremely low, and brittleness is high as a whole. Therefore, it was difficult to impart flexibility withstanding large deformation to the porous bodies.[0003]In view of the conventional problems, studies on a monolithic porous material further having high flexibility are proceeding. Patent Document 3 describes the preparation of a silicone monolithic body of an aerogel or xerogel having continuously penetr...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): B32B27/28B29D7/01C08G77/06C08G77/14C08J5/18
CPCB32B27/283B29D7/01C08G77/06C08G77/14C08J5/18C08J9/286C08J9/36C08J2201/0504C08J2201/0546C08J2205/028C08J2205/05C08J2383/04C08J9/24
Inventor MATSUO, NAOYUKI
Owner NITTO DENKO CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products