Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Method for extracting active ingredients

Inactive Publication Date: 2019-05-23
TCI CO LTD
View PDF0 Cites 2 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The invention provides a way to get a lot of active ingredients from a raw material. This is helpful because conventional methods don't always get a lot of active ingredients.

Problems solved by technology

However, conventional methods are time-consuming, inefficient in extraction, and unable to be used in mass-production, and thus should be improved.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0087]Shelled Chenopodium formosanum was subjected to a breaking process by a crusher for 30 seconds to obtain a powder of Chenopodium formosanum. The powder of Chenopodium formosanum was uniformly mixed with water (powder of Chenopodium formosanum: water 32 1:1-10, at a volume ratio). The mixture thus obtained was placed into a homogenizer. At a normal temperature or 85° C., a primary homogenization was conducted by using blades for coarse homogenization for 2 to 10 minutes. Then, after changing the blades to ones for fine homogenization, further homogenization was conducted for 2 to 10 minutes to obtain a crude extract (first extract).

[0088]The crude extract was subjected to a sieving process by a 400 mesh sieve to obtain a filtrate. Then, the filtrate was placed into a high pressure homogenizer and subjected to a high pressure homogenization. The high pressure homogenization was conducted at a temperature ranging from 25° C. to 85° C. and a pressure ranging from 200 bar to 800 ba...

example 2

[0095]Black tomato was subjected to a breaking process by a crusher for 30 seconds to obtain fragments of the black tomato. The fragments of the black tomato were uniformly mixed with water (fragments of black tomato: water=1:2-10, at a volume ratio). The mixture thus obtained was placed into a homogenizer. At 40° C., a primary homogenization was conducted by using blades for coarse homogenization for 2 to 10 minutes. Then, after changing the blades to ones for fine homogenization, further homogenization was conducted for 2 to 10 minutes to obtain a crude extract (first extract).

[0096]The crude extract was subjected to a sieving process by a sieve with 20 mesh to 100 mesh to obtain a filtrate. Then, the filtrate was placed into a high pressure homogenizer and subjected to a high pressure homogenization. The high pressure homogenization was conducted at a temperature ranging from 25° C. to 45° C. and a pressure ranging from 200 bar to 600 bar for 1 to 2 minutes to obtain an extract o...

example 3

[0102]A banana peel was subjected to a breaking process by a crusher for 30 seconds to obtain fragments of the banana peel. The fragments of banana peel were uniformly mixed with water (fragments of banana peel: water=1:2-10, at a volume ratio). The mixture thus obtained was placed into a homogenizer. At 85° C., a primary homogenization was conducted by using blades for coarse homogenization for 2 to 10 minutes. Then, after changing the blades to ones for fine homogenization, further homogenization was conducted for 2 to 10 minutes to obtain a crude extract (first extract).

[0103]The crude extract was subjected to a sieving process by a sieve with 20 mesh to 100 mesh to obtain a filtrate. Then, the filtrate was placed into a high pressure homogenizer and subjected to a high pressure homogenization. The high pressure homogenization was conducted at a pressure ranging from 200 bar to 600 bar to obtain an extract of the black tomato (second extract).

[0104]The amount of active ingredient...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Temperatureaaaaaaaaaa
Temperatureaaaaaaaaaa
Temperatureaaaaaaaaaa
Login to View More

Abstract

A method for extracting active ingredient(s) from a raw material to be extracted is provided. The method comprises the following steps: (1) mixing a raw material to be extracted with an aqueous solvent to provide a mixture; (2) conducting a homogenization to the mixture to obtain a first extract with active ingredient(s); and (3) conducting a high pressure homogenization to the first extract to obtain a second extract with active ingredient(s), wherein the homogenization in step (2) is conducted at a temperature ranging from normal temperature to 100° C.

Description

FIELD OF THE INVENTION[0001]The present invention relates to a method for extracting an active ingredient from a raw material to be extracted, and particularly relates to a method for extracting an active ingredient from a raw material to be extracted by using a high pressure homogenization.BACKGROUND OF THE INVENTION[0002]It is known that plants contain many active ingredients, which are beneficial for the human body, such as anthocyanidin in black tomatoes, serotonin in banana peels, and betalain, betaxanthin, polyphenol and flavonoid in Chenopodium formosanum, etc.[0003]It is known that the active ingredients in plants can be extracted by way of such as the dipping method, expeller process, solvent extraction method, ultrasonic extraction method or supercritical extraction method. However, conventional methods are time-consuming, inefficient in extraction, and unable to be used in mass-production, and thus should be improved.SUMMARY OF THE INVENTION[0004]In view of the deficienci...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): C07H1/08C07D211/82C07D309/10C07D311/76C07D209/44C07H17/02B01D11/02
CPCC07H1/08C07D211/82C07D309/10C07D311/76C07D209/44C07H17/02B01D11/0257B01D11/02B01D11/0292B01F33/82C07D209/16C07D211/92
Inventor LIN, YUNG-HSIANGLU, CHIEN-YU
Owner TCI CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products