Polarization controlling encoding method, encoder and quantum key dispatching system

A technology of quantum key distribution and polarization control, applied in the field of coding methods and devices in quantum key distribution, can solve the problems of reduced anti-interference ability, hidden safety hazards, not too long and too low interference frequency, and achieves environmental protection. The effect of reduced requirements, reduced speed requirements, improved practical stability

Active Publication Date: 2009-11-04
ANHUI QASKY QUANTUM SCI & TECH CO LTD
View PDF1 Cites 32 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

In fact, this kind of stability is only effective when the transmission distance is not too long and the interference frequency is not too high. When the transmission distance increases, the time difference of the light pulse going back and forth to experience the same position increases, and the anti-interference ability decreases accordingly; , because the optical pulse has to go back and forth twice in the quantum channel, the total loss of the channel is equal to the loss when the actual quantum channel is twice the length. Usually, the method of going strong light and returning single photon is used to make up for this defect, but this compensation method is only applicable to In the current situation of simulating a single-photon source with strongly attenuated laser pulses, the light source for ideal quantum key distribution should be a single-photon source, but the ideal single-photon source is not yet practical. Once the ideal single-photon source is use

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Polarization controlling encoding method, encoder and quantum key dispatching system
  • Polarization controlling encoding method, encoder and quantum key dispatching system
  • Polarization controlling encoding method, encoder and quantum key dispatching system

Examples

Experimental program
Comparison scheme
Effect test

Example Embodiment

[0035] Example 1:

[0036] The first composition structure of the polarization control encoder in the quantum key distribution system of the present invention is as figure 1 Shown: It is composed of two 2×2 3dB polarization-maintaining beam splitters 3 and 6, a polarization-maintaining phase modulator 5 and a polarization-maintaining delay line 4, which together form a polarization-maintaining Mach-Zenter interferometer. One of the two ports 1 and 2 on one side of the 3dB polarization-maintaining beam splitter 3 is used as the input end of the polarization control encoder, and one of the two ports 7 and 8 on the other side of the 3dB polarization-maintaining beam splitter 6 is used as the output end. , The polarization-maintaining phase modulator 5 and the polarization-maintaining delay line 4 (in any order) are inserted into either arm of the above-mentioned Mach-Zehnder interferometer, or both are inserted into the two arms of the above-mentioned Mach-Zehnder interferometer. ...

Example Embodiment

[0037] Example 2:

[0038] The second composition structure of the polarization control encoder in the quantum key distribution system of the present invention is as follows: figure 2 Shown: it is composed of a 2×2 3dB polarization-maintaining beam splitter 11, two mirrors 13 and 15, a polarization-maintaining phase modulator 12 and a polarization-maintaining delay line 14. The two ports 9 and 10 on one side of the 3dB polarization-maintaining beam splitter 11 can be used as the input and output ends of the polarization control encoder. One of the two ports on the other side of the 3dB polarization-maintaining beam splitter 11 is connected to the polarization-maintaining in turn The phase modulator 12 and the mirror 13, the other port on the same side is connected to the polarization maintaining delay line 14 and the mirror 15 in sequence. A slightly changed but functionally identical structure is to connect the polarization maintaining delay line 14 to the polarization maintai...

Example Embodiment

[0039] Example 3:

[0040] The third composition structure of the polarization control encoder in the quantum key distribution system of the present invention is as image 3 Shown: it consists of a 2×2 3dB beam splitter 18, two 90-degree rotating Faraday mirrors 20 and 22, a phase modulator 19 and a delay line 21. The two ports 16 and 17 on one side of the 3dB beam splitter 18 are respectively used as the input and output ends of the polarization control encoder. One of the two ports on the other side of the 3dB beam splitter 18 is connected to the phase modulator 19 and 90 degrees in turn. The Faraday mirror 20 is rotated, and the other port on the same side is connected to the delay line 21 and the 90-degree rotating Faraday mirror 22 in sequence. During operation, the light pulse enters the beam splitter 18 through the port 16 of the beam splitter 18 and is divided into two paths. One path is delayed by the delay line 21, reflected by the 90-degree rotating Faraday mirror 22,...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The invention relates to a polarization controlling encoding method, an encoder and a quantum key dispatching system. The invention is characterized in that the interior of the encoder adopts a polarization-maintaining light path or a ninety-degree Faraday rotation reflector reflection to cause output optical pulse polarization state to be the same; the optical pulse output by the sending terminalof the quantum key dispatching system taking the polarization controlling encoder as the core is passed to the receiving terminal thereof by a quantum channel in a uni-directional way; according to the superposition interference results of the optical pulse and distributorship agreement of the quantum key, the quantum key dispatching is realized. The polarization controlling encoder causes the whole system (comprising a sending set, a reception unit and the quantum channel) to have the interference free capability. The outlet of the sending set and the inlet of the receiving set of the systemare added with a reversal photon separation detection unit, thus preventing the invasion of the modulation information and carrying the photon to get off the reception unit of Trojan photon. The quantum key dispatching system can realize unconditional secure assignment of the key.

Description

technical field [0001] The invention belongs to the technical field of optical transmission secure communication, in particular to an encoding method and device in quantum key distribution. Background technique [0002] Early quantum key distribution was encoded with photon polarization, which is suitable for free space communication but not for optical fiber communication system. Because the symmetry of ordinary optical fibers is not very good, and the interference in the transmission path is manifested as the influence on the polarization state of light, it cannot maintain the polarization state of light propagating in it, and polarization coding is not suitable for use in optical fibers. U.S. Patent No. 5,307,410 discloses a phase-encoded quantum key distribution scheme based on a pair of unequal-arm Mach-Zehnder (Mach-Zehnder) interferometers. Different arms of the special interferometer, because the interference received by different arms cannot be completely consisten...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): G02B6/27H04L9/08H04B10/18H04B10/20H04B10/85
Inventor 韩正甫朱冰莫小范郭光灿
Owner ANHUI QASKY QUANTUM SCI & TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products