Defective-structure LiFePO4 surface-modified lithium-enriched layer-layer cathode material and preparation method thereof
A lithium-rich positive electrode material and surface modification layer technology, which is applied in the field of lithium-ion battery positive electrode material manufacturing, can solve the problems of limited rate characteristic effect, no electrochemical activity, and reduced material discharge capacity, so as to reduce irreversible capacity loss, Good reversibility and high capacity effect
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Examples
Embodiment 1
[0012] Example 1: LiNO 3 :Mn(CH 3 COO) 2 4H 2 O:Ni(CH 3 COO) 2 4H 2 The ratio of O=1.1: 0.55: 0.45 (molar ratio) is uniformly mixed, dissolved in deionized water, and the amount of added substance is tartaric acid which is 1.2 times of the total amount of all metal ions and fully stirred until completely dissolved; the temperature of the system is raised to 70 °C Stirring was continued until 71% of the water evaporated, at which point the solution gradually became viscous and formed a jelly. The jelly-like substance was dried in an oven at 130° C. for 22 hours and then ground in a mortar for 10 minutes. The obtained powder was heated up to 500°C at a rate of 2°C / min in a tube furnace and calcined at this temperature for 3 hours. After cooling, the powder was taken out and continued to grind in a mortar for 10 minutes, and the powder was pressed with a pressure of 100MPa. After being formed into a sheet, the temperature was raised to 850° C. for 5 hours in a tube furnace...
Embodiment 2
[0013] Example 2: LiNO 3 :Mn(CH 3 COO) 2 4H 2 O:Ni(CH 3 COO) 2 4H 2 The ratio of O=1.5: 0.75: 0.25 (molar ratio) is evenly mixed, dissolved in deionized water, and the amount of the added substance is fully stirred until completely dissolved until the tartaric acid which is 1.6 times of the total amount of all metal ions is dissolved; the temperature of the system is raised to 80 °C Stirring was continued until 75% of the water evaporated, at which point the solution gradually became viscous and formed a jelly. The jelly-like substance was dried in an oven at 150° C. for 40 hours and then ground in a mortar for 20 minutes. The obtained powder was heated up to 550°C at a rate of 5°C / min in a tube furnace and calcined at this temperature for 4 hours. After cooling, the powder was taken out and continued to grind in a mortar for 20 minutes, and the powder was pressed with a pressure of 200MPa. Form into a sheet, then heat up to 900° C. for 5 hours in a tube furnace at a ra...
Embodiment 3
[0014] Embodiment 3: LiNO 3 :Mn(CH 3 COO) 2 4H 2 O:Ni(CH 3 COO) 2 4H 2The ratio of O=1.2: 0.6: 0.4 (molar ratio) is uniformly mixed, dissolved in deionized water, and the amount of added substance is tartaric acid 2.0 times of the total amount of all metal ions, fully stirred until completely dissolved; the temperature of the system is raised to 85 °C Stirring was continued until 83% of the water evaporated, at which point the solution gradually became viscous and formed a jelly. The jelly-like mass was dried in an oven at 200° C. for 48 hours and then ground in a mortar for 30 minutes. The obtained powder was heated up to 600°C at a rate of 10°C / min in a tube furnace and calcined at this temperature for 5 hours. After cooling, the powder was taken out and continued to grind in a mortar for 30 minutes, and the powder was pressed with a pressure of 300MPa. Form into a sheet, then heat up to 950°C for 15 hours in a tube furnace at a rate of 9°C / min and calcinate for 15 ho...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com