High performance silicon condenser microphone with perforated single crystal silicon backplate

a silicon condenser microphone and silicon backplate technology, applied in the direction of deaf-aid sets, electrical transducers, electrical instruments, etc., can solve the problems of large air gap, large silicon micro-machining process problems, and silicon microphones reported so far have not achieved sensitivity of more than 20 mv/pa, and achieve low noise and high sensitivity.

Inactive Publication Date: 2005-01-13
KNOWLES ELECTRONICS INC
View PDF3 Cites 64 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0023] Also in accordance with the objects of this invention a method of fabricating a silicon condenser microphone having high sensitivity and low noise is achieved. A single crystal silicon substrate (P−) is provided. First ions (P+) of a first conductivity type are implanted into the single crystal silicon substrate to form a pattern of acoustic holes in a central portion of the substrate. Second ions (N−) of a second conductivity type opposite the first conductivity type are implanted into the substrate and surrounding the pattern of acoustic holes to form a backplate region. Third ions (P+) of the first conductivity type are implanted overlying the pattern of acoustic holes. Fourth ions (N+) of the second conductivity type are implanted overlying a portion of the backplate region not surrounding the pattern of acoustic holes to form an ohmic contact region. A front side nitride layer is deposited overlying the backplate region. A back side nitride layer is deposited on an opposite surface of the substrate. A front side sacrificial oxide layer is deposited overlying the front side nitride layer. A back side sacrificial oxide layer is deposited overlying the back side nitride layer. First trenches are etched through the front side sacrificial oxide layer to the ohmic contacts, and to the substrate off the backplate region. The first trenches are filled with a first polysilicon layer which is patterned to form polysilicon caps overlying the first trenches and to form polysilicon endplates surrounding the pattern of acoustic holes. A first oxide layer is deposited overlying the patterned first polysilicon layer. The first oxide layer is etched to the polysilicon layer followed by a thin oxide deposition to form the tiny holes for first dimples overlying the endplates. A second polysilicon layer is deposited overlying the first oxide layer and filling the first dimple holes. The second polysilicon layer is etched to form a functional layer of a composite diaphragm and its lead-out to a bond pad. A second oxide layer ...

Problems solved by technology

However, the large diaphragm requires a large span of anchored supports and correspondingly a large backplate.
Also, a large air gap requires a thick sacrificial layer.
These present major difficulties in silicon micro-machining processes.
Due to constraints of material choices and intrinsic stress issues in silicon micro-mac...

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • High performance silicon condenser microphone with perforated single crystal silicon backplate
  • High performance silicon condenser microphone with perforated single crystal silicon backplate
  • High performance silicon condenser microphone with perforated single crystal silicon backplate

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0031] The present invention discloses a novel design and process for making a silicon condenser microphone. Referring now more particularly to FIG. 1, there is shown a semiconductor substrate 10, preferably composed of P-doped monocrystalline silicon. A thermal oxide layer 12 is grown on the surface of the substrate to a thickness of between about 270 and 330 Angstroms.

[0032] Referring now to FIG. 2, P+ implants 16 are made through a mask, not shown. These implanted regions 16 will form acoustic holes on the backplate in the later selective silicon etching process. The P+ implant condition must ensure the acoustic hole size at a desired backplate thickness. Now, an N− implanted region 18 is formed using a second mask, not shown. The N− implant condition must ensure a low stress backplate so that the backplate will not deform after the release process at the end of the fabrication process. The implanted ions are driven in to a depth of about 10 microns, which is the depth of the N−...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Thicknessaaaaaaaaaa
Thicknessaaaaaaaaaa
Depthaaaaaaaaaa
Login to view more

Abstract

A silicon condenser microphone is described. The silicon condenser microphone of the present invention comprises a perforated backplate comprising a portion of a single crystal silicon substrate, a support structure formed on the single crystal silicon substrate, and a floating silicon diaphragm supported at its edge by the support structure and lying parallel to the perforated backplate and separated from the perforated backplate by an air gap.

Description

TECHNICAL FIELD [0001] The invention relates to a method of manufacturing a silicon condenser microphone, and more particularly, to a method of manufacturing a high performance silicon condenser microphone using a silicon micro-machining process. BACKGROUND [0002] Silicon condenser microphones have long been an attractive research and development subject. Various microphone designs have been invented and conceptualized by using silicon micro-machining technology. Despite various structural configurations and materials, the silicon condenser microphone consists of four basic elements: a movable compliant diaphragm, a rigid and fixed backplate (which together form a variable air gap capacitor), a voltage bias source, and a pre-amplifier. These four elements fundamentally determine the performance of the condenser microphone. In pursuit of high performance; i.e., high sensitivity, low bias, low noise, and wide frequency range, the key design considerations are to have a large size of d...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): H04R19/00
CPCY10T29/49005H04R19/005
Inventor WANG, ZHEZHANG, QINGXIN
Owner KNOWLES ELECTRONICS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products