Method for the prediction of binding targets and the design of ligands

a technology for predicting binding targets and ligand design, applied in the direction of peptides, instruments, molecular structures, etc., can solve the problems of complicated situation and very demanding efforts for optimizing lead compounds

Inactive Publication Date: 2005-01-13
FREIRE ERNESTO +1
View PDF7 Cites 4 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The invention features a computer-based method for the identification of binding targets in proteins and other macromolecules. More particularly, the invention includes an algorithm aimed at predicting binding targets in proteins and other macromolecules. The algorithm, referred to as “Woolford”, requires knowledge of the three-dimensional structure of the selected target protein or target macromolecule. However, Woolford does not require knowledge of the location or identity of natural binding sites or ligands. Binding targets in the protein are identified and classified according to their expected optimal affinities. Binding targets can be located at the protein surface or at internal surfaces that become exposed as a result of partial unfolding, conformational changes, subunit dissociation, or other events. The entire protein is mapped according to the binding potential of its constituent atoms. In another aspect of the invention, once binding targets are identified, optimal ligands are designed and progressively built by the addition of individual atoms or amino acids in the csae of peptide design that complement structurally and energetically the selected target site.

Problems solved by technology

The situation is more complicated if the location of these sites is not known or if targeting a second binding site is required (a situation necessary, e.g., in cases where resistance towards an existing drug develops).
Furthermore, the optimization of lead compounds is a very demanding endeavor requiring the chemical synthesis and characterization of a very large number of derivatives.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method for the prediction of binding targets and the design of ligands
  • Method for the prediction of binding targets and the design of ligands
  • Method for the prediction of binding targets and the design of ligands

Examples

Experimental program
Comparison scheme
Effect test

example 1

Prediction of Binding Affinities of HIV-1 Protease Inhibitors

HIV-1 protease has been the subject of intense research during the last few years. The development of protease inhibitors is a major endeavor for several pharmaceutical companies, since the successful inhibition of this protein arrests viral maturation. Inhibitors of the HIV-1 protease are substrate analogues, i.e., they function by competing with the natural substrates for the active site. Because substrates are rapidly hydrolyzed by the protease, crystallographic structures of enzyme / substrate complexes cannot be obtained, thus creating additional obstacles to the design process.

In the example presented here, the known structure of the HIV-1 protease with the inhibitor Ace-Thr-Ile-Nle-Nle-Gln-Arg-NH2 (pdb file 4hvp) is used to generate the structure of the widely used chromogenic substrate Lys-Ala-Arg-Val-Nle-NPhe-Glu-Ala-Nle-NH2. In the chemical formulas, Nle stands for norleucine, and NPhe for p-nitro-phenylalanine...

example 2

Application of Structure-Based Thermodynamic Design of Peptide Inhibitors of the Aspartic Protease Endothiapepsin

The development of a structure parameterization of the energetics of protein folding and binding (Bardi et al., 1997; D'Aquino et al., 1996; Gomez et al., 1995(a); Gomez et al., 1995(b); Hilser et al., 1996(b); Luque et al., 1996) has been shown to be accurate enough to predict the helical propensities of amino acids with an accuracy better than 0.2 kcal / mol (Luque et al., 1996), to correctly predict the global stability of proteins and the stability constants per residue as reflected in the pattern of NMR-detected hydrogen exchange protection factors (Hilser et al., 1996(c); Hilser et al., 1997(a); Hilser et al., 1997(b)), and to predict the binding affinity of thirteen HIV-1 protease inhibitors for which high resolution structures are available with an accuracy better than ±1 kcal / mol (Bardi et al., 1997). Since the parameterization has reached the state in which accu...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Gibbs energyaaaaaaaaaa
binding affinityaaaaaaaaaa
energy minimizedaaaaaaaaaa
Login to view more

Abstract

A computer-based method for the identification of binding targets in proteins and other macromolecules. More particularly, the invention includes an algorithm aimed at predicting binding targets in proteins. This algorithm, named Woolford, requires knowledge of the high resolution structure of the protein but no knowledge of the location or identity of natural binding sites or ligands. Binding targets in the protein are identified and classified according to their expected optimal affinities. Binding targets can be located at the protein surface or at internal surfaces that become exposed as a result of partial unfolding, conformational changes, subunit dissociation, or other events. The entire protein is mapped according to the binding potential of its constituent atoms. Once binding targets are identified, optimal ligands are designed and progressively built by the addition of individual atoms that complement structurally and energetically the selected target. This algorithm is expected to have significant applications in structure-based drug design since it allows: 1) identification of binding targets in proteins; 2) identification of additional targets if the primary target is known; 3) design of ligand molecules with optimal binding affinities for the selected target; and 4) refinement of lead compounds by defining the location and nature of chemical groups for optimal binding affinity.

Description

BACKGROUND 1. Technical Field This invention relates to computer assisted methods for identifying target binding sites on a molecule of interest and methods for designing ligands which bind to a molecule of interest. 2. Background Information Structure-based drug design is a major activity in pharmaceutical laboratories. The recent development of HIV-1 protease inhibitors is a major testimony to that effect. In structure-based drug design, the overall goal is to design a small molecule that binds to a specific site in a target molecule, usually a protein or other macromolecule. Where the target protein is an enzyme, the specific target site is often the substrate binding site or active site of the enzyme. Where the target protein is a receptor, the specific target site is often the binding site for a natural ligand of the receptor. In all cases the goal is to alter the behavior of the target molecule in a predetermined way as a result of the binding of the small molecule. The s...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): G16B15/30C07K1/00G06F17/50G16B20/30
CPCC07K1/00G06F19/18G06F19/16C07K2299/00G16B15/00G16B20/00G16B20/30G16B15/30
Inventor FREIRE, ERNESTOLUQUE, IRENE
Owner FREIRE ERNESTO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products