Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

152 results about "Protein folding" patented technology

Protein folding is the physical process by which a protein chain acquires its native 3-dimensional structure, a conformation that is usually biologically functional, in an expeditious and reproducible manner. It is the physical process by which a polypeptide folds into its characteristic and functional three-dimensional structure from a random coil. Each protein exists as an unfolded polypeptide or random coil when translated from a sequence of mRNA to a linear chain of amino acids. This polypeptide lacks any stable (long-lasting) three-dimensional structure (the left hand side of the first figure). As the polypeptide chain is being synthesized by a ribosome, the linear chain begins to fold into its three-dimensional structure. Folding begins to occur even during translation of the polypeptide chain. Amino acids interact with each other to produce a well-defined three-dimensional structure, the folded protein (the right hand side of the figure), known as the native state. The resulting three-dimensional structure is determined by the amino acid sequence or primary structure (Anfinsen's dogma).

Novel method for characterizing and multi-dimensionally representing the folding process of proteins

The invention relates to a novel method for characterizing and multi-dimensionally representing the folding process of proteins (FIG. 9). Said method comprises, in a methodically novel combination, kinetically arranging the hydrodynamic size of the refolding and thus modified protein, associating the proteolytically fragmented intermediates on the basis of the bioinformatic detection patterns, classifying the folding pathway association of the intermediates, characterizing the folding sequences, and multi-dimensionally visualizing the characterized folding process in a computer-aided manner. Said method is characterized in that all intermediates modified during the refolding and thus structurally blocked are identified and digitalized according to the four individual characteristics of said intermediates, namely the hydrodynamic size, the formation time, the folding pathway association, and amount. Said novel method has many applications in the field of research of protein folding and proteopathy, protein engineering, antibody engineering, molecular biology, therapeutic medicine, biotechnology, biotechnological production of protein pharmaceuticals, protein taxonomy, and nanotechnology for developing and producing novel functional protein materials. According to the invention, many and varied products in the form of different assay kits, devices, software, and machines can be produced and used to carry out said method.
Owner:HAN SIGENG

Methods, systems, algorithyms and means for describing the possible conformations of actual and theoretical proteins and for evaluating actual and theoretical proteins with respect to folding, overall

Methods, systems, algorithms and means for describing, analyzing and predicting protein folding motifs and other structures are provided. In one aspect, the Protein Folding Shape Code (PFSC) methods,systems, algorithms and means of the present invention apply generally to all of the categories of protein analysis and description, and are especially relevant to the geometric analyses and descriptions of proteins from their respective sequences or sequence portions. In a novel approach, the present inventions render analyses with respect to the alpha carbons of five-amino acid elements of a protein, utilizing available data to derive torsion angles and pitch distances, to thereby generate a series of overlapping analyses that can be expressed by a plurality of 27 vectors. Methods, systems and algorithms of the invention can be embodied in any computing device or portion thereof, and are adaptable to describe, analyze and predict the folding and other three-dimensional aspects of the structures of biomolecules such as nucleic acids, carbohydrates and glycoproteins. As yet another advantage, the present invention is adaptable as a tool for describing the conformations of many other organic molecules, and are thus especially suitable for use in the design of drugs, and the discovery and design of molecules which are to be adapted to interact with drugs.
Owner:MICRO PHARMATECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products