Compositions and methods for monitoring and altering protein folding and solubility

a technology of applied in the field of microorganisms, molecular biology and protein biochemistry, can solve the problems of inability to develop a robust assay for in vivo protein folding and solubility, and inability to detect the tendency of protein misfolding and aggrega

Inactive Publication Date: 2007-02-01
CORNELL RES FOUNDATION INC
View PDF2 Cites 40 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0040] DNA molecules are said to have “5′ ends” and “3′ ends” because mononucleotides are reacted to make oligonucleotides or polynucleotides in a manner such that the 5′ phosphate of one mononucleotide pentose ring is attached to the 3′ oxygen of its neighbor in one direction via a phosphodiester linkage. Therefore, an end of an oligonucleotides or polynucleotide, referred to as the “5′ end” if its 5′ phosphate is not linked to the 3′ oxygen of a mononucleotide pentose ring and as the “3′ end” if its 3′ oxygen is not linked to a 5′ phosphate of a subsequent mononucleotide pentose ring. As used herein, a nucleic acid sequence, even if internal to a larger oligon...

Problems solved by technology

As if this weren't enough, existing biochemical means for assessing the tendency of proteins to misfold and aggregate are tedious.
As a result, screening for constructs and/or conditions that favor solubility is inefficient and genetic selection of folded structures has not been forthcoming.
Development of a robust assay for in vivo protein folding and solubility has been challenging for researchers because of limitations on detecting and reporting the solubility of a protein.
This fusion approach is often problematic as certain reporter proteins can remain active even when the target protein to which th...

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Compositions and methods for monitoring and altering protein folding and solubility
  • Compositions and methods for monitoring and altering protein folding and solubility
  • Compositions and methods for monitoring and altering protein folding and solubility

Examples

Experimental program
Comparison scheme
Effect test

example 1

Materials and Methods

[0251] Bacterial strains and plasmids. Wildtype E. coli strain MC4100 and a ΔtatC derivative of MC4100, strain B1LK0 (See, e.g., Bogsch et al., J Biol Chem 273, 18003-18006 (1998)), were used for all experiments. Plasmids for cytoplasmic expression of MBP (wt) and its folding mutant derivatives (See, e.g., Betton and Hofnung, J Biol Chem 271, 8046-8052 (1996)) were generated by inserting the gene encoding each MBP sequence into the NcoI / HindIII position of pTrc99A (Amersham Pharmacia). Plasmids for expressing MBP and its derivatives via the Tat pathway were created by excising the phoA gene from pTorA-AP (See, e.g., DeLisa et al., Proc Natl Acad Sci U S A 100, 6115-6120 (2003)) with XbaI and HindIII and inserting the gene encoding mature MBP (wt) or a folding mutant into the resulting XbaI / HindIII sites. Similarly, plasmids for localizing DsRed and its derivatives to the Tat pathway were generated by inserting either the DsRed gene sequence or its derivatives, ...

example 2

Folding Quality Control of the Tat Pathway

[0257] Tat transport of E. coli maltose binding protein (MBP) and three well-characterized MBP mutants prone to varying levels of off-pathway folding intermediates: MBP-G32D, MBP-I33P, and MalE31 (G32D / I33P) (See, e.g., Betton and Hoffnung, J Biol Chem 271, 8046-8052 (1996)) was evaluated. These proteins display a >100-fold difference in in vivo solubility with unfolding / refolding stability ranging from −5.5 kcal / mol to −9.5 kcal / mol ((See, e.g., Betton and Hofnung, J Biol Chem 271, 8046-8052 (1996)). The coding region for the well-characterized E. coli TMAO reductase twin-arginine signal peptide plus the first 4 residues of mature TorA (ssTorA, amino acids 1-46) (DeLisa et al., J Biol Chem 277, 29825-29831 (2002)) was fused upstream of the gene encoding the mature form of each MBP (residues 26-396), thus creating four ssTorA-MBP chimeras. Cell fractionation of wildtype MC4100 E. coli cells was performed to track subcellular localization an...

example 3

Tat-Based Solubility Reporter

[0259] To exploit the quality control feature of the Tat pathway for monitoring protein solubility, a genetic assay that employs a tripartite fusion of the TorA signal peptide, a ‘target’ protein, and mature TEM1 β-lactamase (Bla) (FIG. 1A) was developed. The premise for this assay is as follows: a soluble target protein is exported to the periplasm via the Tat pathway and, by virtue of the Bla fusion, confers ampicillin resistance to E. coli cells expressing the ssTorA-target-Bla chimera. To verify that Bla is indeed capable of reporting Tat dependent transport in the assay, a vector (pTMB, FIG. 1B) was first constructed with no gene in the target position that expresses ssTorA-Bla. Upon expression of ssTorA-Bla in MC4100 and B1LK0, only periplasmic Bla localization was observed with a corresponding ampicillin resistance phenotype in MC4100 cells that possess a functional Tat pathway (FIG. 2C). Thus, Bla can be specifically transported by the Tat pathw...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The present invention relates to the fields of microbiology, molecular biology and protein biochemistry. More particularly, it relates to compositions and methods for analyzing and altering (e.g., enhancing or inhibiting) protein folding and solubility.

Description

[0001] This invention was funded, in part, under NSF Grant BES-0449080. The government may have certain rights in the invention.FIELD OF THE INVENTION [0002] The present invention relates to the fields of microbiology, molecular biology and protein biochemistry. More particularly, it relates to compositions and methods for analyzing and altering (e.g., enhancing or inhibiting) protein folding and solubility. BACKGROUND OF THE INVENTION [0003] The expression of heterologous proteins represents a cornerstone of the biotechnology enterprise. Unfortunately, many commercially important proteins misfold and aggregate when expressed in a heterologous host (See, e.g., Makrides, Microbiol Rev 60, 512-538 (1996); Baneyx and Mujacic, Nat Biotechnol 22, 1399-1408 (2004); Georgiou and Valax, Curr Opin Biotechnol 7, 190-197 (1996)). Similarly, protein misfolding and aggregation is the pathological hallmark of more than a dozen diseases including Alzheimer's (See, e.g., Radford et al., Cell 97, 29...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): A61K39/02C07K14/245G01N33/53C12N1/21C12N15/74C07H21/04
CPCC07K2319/034C12N15/1086C12N15/625C12N15/1034C12N15/62
Inventor DELISA, MATTHEW P.FISHER, ADAM CHARLES
Owner CORNELL RES FOUNDATION INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products