Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Process for the production of acetic acid

Active Publication Date: 2006-11-02
CELANESE INT CORP
View PDF17 Cites 142 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0017] This invention relates to a process for the production of acetic acid and, in particular, an improved process for the reduction and/or removal of permanganate reducing compounds and alkyl iodides formed by the carbonylation of methanol in the presence of a Group VIII metal carbonylation catalyst to produce acetic acid. More specifically, this invention relates to an improved process for reducing and/or removing permanganate reducing compounds or their precursors from intermediate streams during the formation of acetic acid by said carbonylation processes.
[0018] In one aspect, the present invention provides a process for the reduction and/or removal of permanganate reducing compounds (PRC's) formed in the carbonylation of a carbonylatable reactant to produce a carbonylation product comprising acetic acid. The process comprises the steps of: (a) separating the carbonylation product to provide a vapor overhead stream comprising acetic acid and a less volatile catalyst phase; (b) distilling the vapor overhead stream to yield a purified acetic acid product and a low boiling overhead vapor stream comprising methyl iodide, water, acetic acid, methyl acetate, and at least one PRC; (c) condensing the low boiling overhead vapor stream and biphasically separating it to form a condensed heavy liquid phase and a condensed light liquid phase; (d) distilling the condensed light liquid phase in a single distillation column to form a second vapor phase stream overhead and a higher boiling liquid phase residuum, wherein the second vapor phase stream is enriched with PRC's with respect to the condensed light liquid phase; and (e) condensing the second vapor phase stream and extracting the condensed stream with water to obtain an aqueous acetaldehyde stream comprising PRC and a raffinate comprising methyl iodide. In certain variations, the process can be operated with or without a sidestream comprising methyl acetate being taken from the distillation column of step (d).
[0019] In another aspect, the present invention provides a process for the reduction and/or removal of permanganate reducing compounds (PRC's) formed in the carbonylation of a carbonylatable reactant to produce a carbonylation product comprising acetic acid, comprising the steps of: (a) separating the carbonylation product to provide a vapor overhead stream comprising acetic acid and a less volatile catalyst phase; (b) distilling the vapor overhead stream to yield a purified acetic acid product and a low boiling overhead vapor strea

Problems solved by technology

These trace impurities affect quality of acetic acid, especially when they are recirculated through the reaction process, which, among other things, can result in the build up over time of these impurities.
However, the additional treatment of the final product adds cost to the process, and distillation of the treated acetic acid product can result in additional impurities being formed.
While it is possible to obtain acetic acid of relatively high purity, the acetic acid product formed by the low-water carbonylation process and purification treatment described above frequently remains somewhat deficient with respect to the permanganate time due to the presence of small proportions of residual impurities.
Because a sufficient permanganate time is an important commercial test, which the acid product may be required to meet to be suitable for many uses, the presence of impurities that decrease permanganate time is objectionable.
Moreover, it has not been economically or commercially feasible to remove minute quantities of these impurities from the acetic acid by distillation because some of the impurities have boiling points close to that of the acetic acid product or halogen-containing catalyst promoters, such as methyl iodide.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Process for the production of acetic acid

Examples

Experimental program
Comparison scheme
Effect test

first embodiment

[0054] Further in accordance with this first embodiment of the present invention, second vapor phase stream 36 is extracted with water (generally indicated by 70) to remove and / or reduce PRC's, notably acetaldehyde. Acetaldehyde is extracted by the water to obtain aqueous acetaldehyde stream 72, which is PRC-rich, and in particular acetaldehyde-rich. Aqueous acetaldehyde stream 72 will generally be treated as a waste, although in some embodiments acetaldehyde may be stripped, with the water being recirculated to the process. The raffinate, notably containing methyl iodide is desirably returned to the carbonylation process by stream 74. The efficiency of the extraction will depend on such things as the number of extraction stages and the water to feed ratio.

[0055] Extraction with water 70, in accordance with this first or other embodiments of the present invention, can be either a singlestage or multistage extraction and any equipment used to conduct such extractions can be used in t...

second embodiment

[0057] In accordance with the present invention, also illustrated in FIG. 1, low-boiling overhead vapor stream 28 is condensed in decanter 16 where it is biphasically separated to form a condensed heavy liquid phase and a condensed light liquid phase 30. The condensed light liquid phase 30 is provided to distillation column 18 via stream 30 / 32. Again, in this and other embodiments of the present invention, a portion of stream 30 can be directed back to the light ends column 14 as reflux stream 34. In distillation column 18, a second vapor phase stream 36 overhead and a higher boiling liquid phase residuum stream 38 are formed. A sidestream 80, comprising methyl acetate, is also taken.

[0058] The sidestream 80 allows the distillation column 18 to be operated under conditions desirable for obtaining a higher concentration of acetaldehyde in second vapor phase stream 36 while providing a mechanism for removing methyl acetate that might otherwise build up in the center of distillation co...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Concentrationaaaaaaaaaa
Phaseaaaaaaaaaa
Boiling pointaaaaaaaaaa
Login to View More

Abstract

A process for the reduction and / or removal of permanganate reducing compounds formed by the carbonylation of methanol in the presence of a Group VIII metal carbonylation catalyst to produce acetic acid is disclosed. More specifically, a process for reducing and / or removing permanganate reducing compounds or their precursors from intermediate streams during the formation of acetic acid by said carbonylation processes is disclosed. In particular, a process in which a low boiling overhead vapor stream from a light ends column is subjected to a single distillation to obtain an overhead that is subjected to an extraction to selectively remove and / or reduce PRC's from the process is disclosed.

Description

BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] This invention relates to a process for the production of acetic acid and, in particular, to an improved process for the reduction and / or removal of permanganate reducing compounds formed by the carbonylation of methanol in the presence of a Group VIII metal carbonylation catalyst to produce acetic acid. More specifically, this invention relates to an improved process for reducing and / or removing permanganate reducing compounds or their precursors from intermediate streams during the formation of acetic acid by said carbonylation processes. [0003] 2. Technical Background [0004] Among currently employed processes for synthesizing acetic acid, one of the most useful commercially is the catalyzed carbonylation of methanol with carbon monoxide as taught in U.S. Pat. No. 3,769,329, issued to Paulik et al. on Oct. 30, 1973. The carbonylation catalyst contains rhodium, either dissolved or otherwise dispersed in a liquid re...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): C07C51/14C07C45/90
CPCC07C51/44C07C51/48C07C53/08C07C51/12
Inventor ZINOBILE, RAYMOND J.SCATES, MARK O.MAKELKI, JONATHAN A.SALADO, MANUEL
Owner CELANESE INT CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products