Copper alloy with high strength and excellent processability in bending and process for producing copper alloy sheet

a technology of copper alloy and processability, applied in the field of copper alloy, can solve the problems insufficient improvement of bending workability, and difficulty in achieving both the necessary strength and the necessary bending workability at the same time, so as to improve the strength and improve the strength of cu—fe—p alloys, the effect of deterioration in bending workability

Inactive Publication Date: 2009-04-02
KOBE STEEL LTD
View PDF7 Cites 23 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0036]A prerequisite of the present invention is that the strength of Cu—Fe—P alloys is improved by further adding Mg to form Cu—Mg—P—Fe alloys. Furthermore, if Mg is simply included in the alloy, the strength is improved, but the bending workability is caused to deteriorate.
[0037]In order to improve the strength of a Cu—Mg—P—Fe alloy, it is effective to make the size of the precipitates containing Mg very fine, and to deposit large amounts of this substance. For this reason, it is necessary that the amount of Mg dissolved in the Cu matrix as a solid solution prior to annealing be large.
[0038]However, in Cu—Mg—P—Fe alloys, most of the added Mg is not dissolved in solid solution in the Cu matrix. In actuality, most of the Mg is contained in oxides and crystal deposits produced during dissolution and casting, and in coarse deposits produced from the even heating of the ingot to hot rolling.
[0039]These coarse Mg oxides and precipitates, i.e., coarse Mg compounds, not only do not contribute to an improvement in strength, but constitute starting points for failure, and cause a drop in the bending workability. On the other hand, fine Mg compounds which have a small size (particle diameter) contribute to an improvement in strength, and do not cause any drop in bending workability.
[0040]Accordingly, in the present invention, fine oxides and precipitates containing Mg (Mg compounds), which are effective in improving the strength, are caused to remain in large amounts in accordance with the amount of added Mg (Mg contained in the alloy). At the same time, the quantity of oxides and precipitates (Mg compounds) containing coarse Mg is controlled to a small amount, so that a copper alloy having a high strength and superior bending workability in good balance is obtained.
[0041]In the present invention, the strength is improved by further adding Mg of a Cu—Fe—P alloy, and, in order to prevent a deterioration in the bending workability, the crystal grains of the copper alloy composition are made finer, and the variation in the individual grain size values is suppressed. Specifically, coarse crystal grains are excluded from the copper alloy composition, and the individual grain size values are made as uniformly fine as possible.

Problems solved by technology

The addition of solid-solution reinforcing elements such as Sn or Mg, and an increase in the amount of work-hardening obtained by strong working effected by increasing the working ratio of cold rolling, which are conventional means of obtaining high-strength copper alloys, are inevitably accompanied by a deterioration in bending workability, so that it is difficult achieve both the necessary strength and the necessary bending workability at the same time.
However, in the case of such high-strength Cu—Fe—P alloys, the bending workability cannot be sufficiently improved with respect to severe bending such as the abovementioned U-bending, 90-degree bending after notching or the like merely by using structure control means such as the finer grain size, control of the disperse state of the crystallized / precipitated matter or the like described in the abovementioned patent documents 1-6 or the aggregated structure control means described in the abovementioned patent documents 7, 8.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

first embodiment

(Composition of Copper Alloy)

[0043]First, the chemical composition in the Cu—Mg—P—Fe alloy of the present invention that is used to satisfy the requirements for the necessary strength and conductivity, and for the high bending workability and anti-stress relaxation characteristics needed in the various applications described above, will be described below.

[0044]In the present invention, in order to achieve a high strength, high conductivity and high bending workability, a basic composition is set which comprises a copper alloy respectively containing 0.01 to 1.0% by mass of Fe, 0.01 to 0.4% by mass of P, and 0.1 to 1.0% by mass of Mg, with the remainder comprising copper and unavoidable impurities. Furthermore, in the following descriptions of the respective elements, all descriptions of percentages are based on mass %.

[0045]In this basic composition, Ni or Co, or both, and Zn or Sn or both, may also be contained in the alloy in the ranges described below. Furthermore, other impurit...

first examples

[0076]Examples of the present invention will be described below. Various types of copper alloy thin plates comprising Cu—Mg—P—Fe alloys in which the states of Mg compounds in the structure were different were manufactured, and characteristics such as the strength, conductivity, bendability and the like were evaluated.

[0077]In concrete terms, copper alloys having the respective chemical compositions shown in Table 1 were respectively manufactured using a coreless furnace; then, ingots were manufactured by semi-continuous casting, thus producing ingots with a thickness of 70 mm×width of 200 mm×length of 500 mm. After the surfaces of the respective ingots were planed and heated, plates with a thickness of 16 mm were formed by hot rolling; then, these plates were rapidly cooled in water from a temperature of 650° C. or greater. Next, after the oxidation scale was removed, primary cold rolling (intermediate elongation) was performed. Following the planing of these plates, primary anneali...

second embodiment

[0103]In the present invention, in order to achieve a high strength, high conductivity and high bending workability, a basic composition is used which comprises a copper alloy respectively containing 0.01 to 3.0% Fe, 0.01 to 0.4% P, and 0.1 to 1.0% Mg (in mass %), with the remainder comprising copper and unavoidable impurities. This composition is also an important prerequisite condition from the standpoint of the composition that is necessary for reducing the grain size of the copper alloy structure, and suppressing the variation of the individual grain size values, and for depositing fine precipitated particles (without coarsening these particles). Furthermore, the percentages indicated in the following description of the respective elements are all mass %.

[0104]The following elements may be added to this basic composition in order to improve the bending workability.

[0105]Ni or Co, or both, at a total rate of 0.01 to 1.0 mass %.

[0106]Zn: 0.005 to 3.0%

[0107]Sn: 0.01 to 5.0%

[0108]Mn...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
sizeaaaaaaaaaa
current densityaaaaaaaaaa
grain sizeaaaaaaaaaa
Login to view more

Abstract

The present invention provides a Cu—Fe—P alloy which has a high strength, high conductivity and superior bending workability. The copper alloy comprises 0.01 to 1.0% Fe, 0.01 to 0.4% P, 0.1 to 1.0% Mg, and the remainder Cu and unavoidable impurities. The size of oxides and precipitates including Mg in the copper alloy is controlled so that the ratio of the amount of Mg measured by a specified measurement method in the extracted residue by a specified extracted residue method to the Mg content in said copper alloy is 60% or less, thus endowing the alloy with a high strength and superior bending workability.

Description

TECHNICAL FIELD[0001]The present invention relates to a copper alloy which has a high strength, a high electrical conductivity and superior bending workability, e.g., a copper alloy suitable for use as electrical or electronic part materials in household appliances, semiconductor parts such as IC lead frames for semiconductor devices or the like, printed wiring boards or the like, copper alloying element plate strips used in mechanical parts such as opening-and-closing parts, bus bars, terminals, connectors and the like. Furthermore, the present invention also relates to a method for manufacturing such a copper alloy.BACKGROUND ART[0002]Cu—Fe—P alloys which contain Fe and P have been commonly employed in the past as copper alloys in the various applications described above, beginning with semiconductor IC lead frames and the like. Examples of such Cu—Fe—P alloys include copper alloys that contain 0.05 to 0.15% Fe and 0.025 to 0.040% P (C19210 alloy) and copper alloys that contain 2....

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): C22F1/08C22C9/00
CPCB21B2003/005B22D11/004C22C1/06C22F1/08C22C9/02C22C9/04C22C9/06C22C9/00B22D21/025C22C9/05B22D11/00C22B3/02
Inventor ARUGA, YASUHIROKAJIHARA, KATSURAKUDO, TAKESHI
Owner KOBE STEEL LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products