Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Ohmic n-contact formed at low temperature in inverted metamorphic multijunction solar cells

Inactive Publication Date: 2010-01-21
EMCORE SOLAR POWER
View PDF99 Cites 116 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0022]Briefly, and in general terms, the present invention provides a method of forming a multifunction solar cell comprising an upper subcell, a middle subcell, and a lower subcell, the method comprising; providing a first substrate for the epitaxial growth of semiconductor material; forming an upper first solar subcell on said first substrate having a first band gap; forming a middle second solar subcell over said first solar subcell having a second band gap smaller than said first band gap; forming a graded interlayer over said second solar cell; forming a lower third solar subcell over said graded interlayer having a fourth band gap smaller than said second band gap such that said third subcell is lattice mismatched with respect to said second subcell; and forming a contact having a contact resistance of less than 2×10−4 ohms-cm2 over said first subcell at a temperature of 210° or less.
[0023]In another aspect, the present invention provides a method of manufacturing a solar cell including; providing a first semiconductor substrate for the epitaxial growth of semiconductor material; forming a first subcell on said substrate comprising a first semiconductor material with a first band gap and a first lattice constant; forming a second subcell comprising a second semiconductor material with a second band gap and a second lattice constant, wherein the second band gap is les

Problems solved by technology

While significant progress has been made in this area, the requirement for solar cells to meet the needs of more sophisticated applications has not kept pace with demand.
The structures described in such reference present a number of practical difficulties relating to the appropriate choice of materials and fabrication steps, for a number of different layers of the cell.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Ohmic n-contact formed at low temperature in inverted metamorphic multijunction solar cells
  • Ohmic n-contact formed at low temperature in inverted metamorphic multijunction solar cells
  • Ohmic n-contact formed at low temperature in inverted metamorphic multijunction solar cells

Examples

Experimental program
Comparison scheme
Effect test

second embodiment

[0075]Although the preferred embodiment of the present invention utilizes a plurality of layers of InGaAlAs for the metamorphic layer 116 for reasons of manufacturability and radiation transparency, other embodiments of the present invention may utilize different material systems to achieve a change in lattice constant from subcell B to subcell C. Thus, the system of Wanlass using compositionally graded InGaP is the present invention. Other embodiments of the present invention may utilize continuously graded, as opposed to step graded, materials. More generally, the graded interlayer may be composed of any of the As, P, N, Sb based III-V compound semiconductors subject to the constraints of having the in-plane lattice parameter greater or equal to that of the second solar cell and less than or equal to that of the third solar cell, and having a bandgap energy greater than that of the second solar cell.

[0076]In another embodiment of the present invention, an optional second barrier l...

first embodiment

[0105]FIG. 14A is a cross-sectional view of the solar cell of FIG. 12 after the next process step in the present invention in which the surrogate substrate 125 is appropriately thinned to a relatively thin layer 125a, by grinding, lapping, or etching.

[0106]FIG. 14B is a cross-sectional view of the solar cell of FIG. 14A after the next process step in a second embodiment of the present invention in which a cover glass is secured to the top of the cell by an adhesive.

third embodiment

[0107]FIG. 15 is a cross-sectional view of the solar cell of FIG. 14B after the next process step in the present invention in which a cover glass is secured to the top of the cell and the surrogate substrate 125 is entirely removed, leaving only the metal contact layer 123 which forms the backside contact of the solar cell. The surrogate substrate may be reused in subsequent wafer processing operations.

[0108]FIG. 16 is a graph of a doping profile in the emitter and base layers in one or more subcells of the inverted metamorphic multijunction solar cell of the present invention. The various doping profiles within the scope of the present invention, and the advantages of such doping profiles are more particularly described in copending U.S. patent application Ser. No. 11 / 956,069 filed Dec. 13, 2007, herein incorporated by reference. The doping profiles depicted herein are merely illustrative, and other more complex profiles may be utilized as would be apparent to those skilled in the ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A method of forming a multifunction solar cell including an upper subcell, a middle subcell, and a lower subcell by providing a substrate for the epitaxial growth of semiconductor material; forming a first solar subcell on the substrate having a first band gap; forming a second solar subcell over the first solar subcell having a second band gap smaller than the first band gap; forming a graded interlayer over the second subcell, the graded interlayer having a third band gap greater than the second band gap; forming a third solar subcell over the graded interlayer having a fourth band gap smaller than the second band gap such that the third subcell is lattice mismatched with respect to the second subcell; and forming a contact composed of a sequence of layers over the first subcell at a temperature of 280° C. or less and having a contact resistance of less than 5×10−4 ohms-cm2.

Description

REFERENCE TO RELATED APPLICATIONS[0001]This application is related to co-pending U.S. patent application Ser. No. 12 / 218,558 filed Jul. 16, 2008.[0002]This application is related to co-pending U.S. patent application Ser. No. 12 / 123,864 filed May 20, 2008.[0003]This application is related to co-pending U.S. patent application Ser. No. 12 / 102,550 filed Apr. 14, 2008.[0004]This application is related to co-pending U.S. patent application Ser. No. 12 / 047,842, and U.S. Ser. No. 12 / 047,944, filed Mar. 13, 2008.[0005]This application is related to co-pending U.S. patent application Ser. No. 12 / 023,772, filed Jan. 31, 2008.[0006]This application is related to co-pending U.S. patent application Ser. No. 11 / 956,069, filed Dec. 13, 2007.[0007]This application is also related to co-pending U.S. patent application Ser. Nos. 11 / 860,142 and 11 / 860,183 filed Sep. 24, 2007.[0008]This application is also related to co-pending U.S. patent application Ser. No. 11 / 836,402 filed Aug. 8, 2007.[0009]This ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): H01L31/042H01L31/18
CPCH01L31/022425H01L31/06875H01L31/0725H01L31/1844H01L31/078Y02E10/544H01L31/02008H01L31/0735
Inventor VARGHESE, TANSENCORNFELD, ARTHUR
Owner EMCORE SOLAR POWER
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products