Eureka AIR delivers breakthrough ideas for toughest innovation challenges, trusted by R&D personnel around the world.

Paper coating formulation

a technology of pigment paper and coating, applied in the direction of dispersing agent addition, transportation and packaging, synthetic resin layered products, etc., can solve the problems of increasing the amount of light scattering from air voids, porosity of the coating, inefficient hiding, etc., and achieve the effect of improving brightness

Inactive Publication Date: 2014-10-02
DOW GLOBAL TECH LLC
View PDF8 Cites 2 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The patent states that using potassium pyrophosphate and different types of TiO2 in films can improve their brightness when compared to other similar dispersants. This means that by using these ingredients in films, they can make them brighter and more visually appealing.

Problems solved by technology

In the absence of modifiers such as dispersants, TiO2 particles will crowd, leading to inefficient hiding.
However, even with well dispersed TiO2 there can be crowding of TiO2 particles as the level of TiO2 is increased.
This improvement in brightness, however, is attributed to an increase in the porosity of the coating, which increases the amount of light scattering from air voids, and not to the increased efficiency of TiO2 dispersion in the coating.
Although the phosphate or phosphonate functionality is known to enhance adsorptivity of the binder to the TiO2, thereby improving the efficiency of its usage, the presence of phosphates or phosphonates often adversely affect viscosity stability of the binder and water sensitivity of the coating.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

example 1

Preparation of Coating with Vinyl Acrylic Latex and TKPP

[0017]RPS TiO2 (10.5 parts by weight, 70.58% solids) was added to Clay (89.5 parts by weight, 68.24% solids), followed by addition of Vinyl Acrylic Latex (20 parts by weight, 49.8% solids), then TKPP (0.3 parts by weight, 5% solids). Additional DI water was added to adjust percent solids to 45%. The pH was then adjusted to 8-8.5 with NaOH followed by addition of RM-232D (0.6 parts by weight, 28.27% solids).

example 2

Preparation of Coating with Styrene Acrylic Latex and TKPP

[0021]RPS TiO2 (10.5 parts by weight, 70.58% solids) was added to Clay (89.5 parts by weight, 68.24% solids), followed by the addition of Styrene Acrylic Latex (20 parts by weight, 46.5% solids), then TKPP (0.8 parts by weight, 5% solids). Additional DI water was added to adjust solids to 45%. The pH was then adjusted to 8-8.5 with NaOH followed by addition of RM-232D (0.2 parts by weight, 28.27% solids).

example 3

Preparation of Coating with Vinyl Acrylic Latex, 2063 TiO2, and TKPP

[0026]2063 TiO2 (10.5 parts by weight, 77.8% solids) was added to Clay (89.5 parts by weight, 68.24% solids), followed by addition of Vinyl Acrylic Latex (20 parts by weight, 49.8% solids), then TKPP (0.3 parts by weight, 5% solids). Additional DI water was added to adjust percent solids to 45%. The pH was then adjusted to 8-8.5 with NaOH followed by addition of RM-232D (0.6 parts by weight, 28.27% solids).

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Percent by massaaaaaaaaaa
Percent by massaaaaaaaaaa
Percent by massaaaaaaaaaa
Login to View More

Abstract

The present invention relates to a laminate comprising coated or uncoated paperboard coated with a film that comprises a polymeric binder, TiO2, and tetrapotassium pyrophosphate. Paper or paperboard coated with a film containing tetrapotassium pyrophosphate shows excellent optical properties.

Description

BACKGROUND OF THE INVENTION[0001]The present invention relates to a pigmented paper coating with improved brightness.[0002]Titanium dioxide (TiO2) is used as a pigment in paperboard coatings on darker substrates such as recycled board and unbleached Kraft board to improve the optical properties such as brightness, opacity, and appearance. In addition, TiO2 is used in lightweight coated paper to improve opacity, or in premium coated paper grades to improve the brightness and appearance. Motivated by the high cost of TiO2, papermakers are looking for ways to either reduce its usage or improve its efficiency or both.[0003]In the absence of modifiers such as dispersants, TiO2 particles will crowd, leading to inefficient hiding. However, even with well dispersed TiO2 there can be crowding of TiO2 particles as the level of TiO2 is increased. Furthermore, it is known, for example, (2001 TAPPI Coating Conference Paper by Imerys on “Optimum Dispersion In Blade Coating Operations;” also, Chap...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): D21H19/64D21H19/38
CPCD21H19/385D21H19/64B32B5/16D21H19/44D21H21/08B32B2260/046Y10T428/264
Inventor KALIHARI, VIVEKROPER, III, JOHN A.
Owner DOW GLOBAL TECH LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products