Eureka AIR delivers breakthrough ideas for toughest innovation challenges, trusted by R&D personnel around the world.

Method for producing branched aromatic polycarbonate resin

a technology of aromatic polycarbonate and resin, which is applied in the field of method for producing branched aromatic polycarbonate resin, can solve the problems of poisonous phosgene using the producing method, difficult molding of large-sized products, and dripping of resin by self-weight, and achieves the desired branching degree easily, good quality inherently, and sufficient molecular weight-increase

Active Publication Date: 2015-08-20
MITSUBISHI GAS CHEM CO INC
View PDF1 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The present invention relates to a method for producing a high-quality, highly branched aromatic polycarbonate resin using an aromatic polycarbonate prepolymer and a linking agent containing a trifunctional or more of an aliphatic polyol compound under mild conditions in a short period of time. The method involves subjecting the components to transesterification reaction in the presence of a transesterification catalyst under a reduced pressure condition. The resulting resin has a high molecular weight and desired branching degree without coloring, crosslinking, and other negative effects. The amount of linking agent used affects the molecular weight and branching degree of the resin. The use of a predetermined amount of branching agent and a certain amount of aliphatic polyol compound results in the formation of a high molecular weight, high-quality branched aromatic polycarbonate with a desired branching degree. This method provides a simple and efficient way to produce high-quality polycarbonate resin.

Problems solved by technology

That is, with regard to shear fluidity, shear velocity dependency on the melt viscosity is small, and with regard to elongation fluidity, an extremely low viscosity is shown, so that when a large-sized extrusion molding or blow molding is carried out, dripping of the resin by self-weight is likely occurred, whereby molding of a large-sized product is difficult.
However, in the interfacial polymerization method, poisonous phosgene must be used in the producing method.
In addition, there remains the problems that the apparatus is corroded by the by-producing hydrogen chloride or sodium chloride and a chlorine-containing compound such as methylene chloride, etc., used as a solvent with a large amount, and it is difficult to remove impurities such as sodium chloride, etc., or remaining methylene chloride, that may affect the physical properties of the polymer.
Also, an unspecified amount of the branched structure is generated in the high molecular weight polycarbonate produced by the conventional transesterification method at the time of production, so that the branching degree cannot be expected at the time of melting.
This branched structure is based on a branched structure or on a crosslinked structure due to an ester bond formed by subjecting the polycarbonate to similar reaction to Kolbe-Schmitt reaction by an action of an alkali, and it has been known that it is difficult to control the amount of the branched structure.
That is, there is a possibility that it increases or decreases depending on the apparatus and operating conditions, whereby it is extremely difficult to control the flow behavior at the time of melting depending on the various kinds of moldings.
Also, hue of the high molecular weight polycarbonate produced by the conventional transesterification tend to be lowered, and a product which becomes tinged with yellow can only be industrially obtained.
It has further been known that it has a defect that strength is inferior (brittle fracture is remarkable).
According to this method, however, whereas effectiveness in a low molecular weight region can be confirmed, in a high molecular weight region, a polymerization reaction product becomes an extremely high viscose fluid and the polymerization rate becomes markedly slow, so that resin deterioration such as crosslinking, branching or lowering in hue, can be markedly observed by heat retention, etc., for a long period of time during the polymerization.
Therefore, it was substantially extremely difficult to obtain a high molecular weight polycarbonate in which a branched-structure amount has been controlled to an optional amount by controlling a molar ratio of the charged polymerization starting materials.
That is, when a polycarbonate resin is produced by using the melt polymerization method, it was extremely difficult to control melt viscosity or elongation viscosity in a low shear velocity region similarly in the interfacial polymerization method and to quantitatively improve blow moldability, drip-preventing performance and flame retardance, etc., only by the addition amount of the branching agent.
However, these methods use a specific compound as a catalyst, or methods in which a specific catalyst(s) is selected or used in combination, which cannot be said to be general, and further, an influence of the catalyst on a human body or the environment is concerned at the time of using the obtained polycarbonate.
However, use of the polyfunctional compound involves the problem that gel is likely formed by crosslinking.
According to this controlling method, however, it is difficult to fundamentally suppress the spontaneous generation of the branched structure, and yet, it is a heterogeneous structure by a spontaneously generated heat deterioration reaction, so that it is necessary to use specific operating conditions in the specific apparatus for optionally controlling the generating amount of the branched structure.
However, these are intended to promote elimination of the phenol, and whereas a high molecular weight polycarbonate can be obtained thereby, the physical property thereof could not be satisfied in both of the mechanical properties and molding fluidity.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method for producing branched aromatic polycarbonate resin
  • Method for producing branched aromatic polycarbonate resin
  • Method for producing branched aromatic polycarbonate resin

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0238]In 300 cc of a four-necked flask equipped with a stirrer and a distillation apparatus were charged 45.5 g (0.20 mol) of BPA, 48.0 g (0.22 mol) of DPC and 0.5 μmol / mol (which means “0.5 μmol based on 1 mol of BPA”) of cesium carbonate as a catalyst, and the mixture was heated to 180° C. under nitrogen atmosphere and stirred for 5 minutes.

[0239]Thereafter, the pressure was adjusted to 27 kPa (200 torr) and simultaneously the temperature of the mixture was raised to 205° C. for 35 minutes. Thereafter, the mixture was maintained at 27 kPa (200 torr) and at 205° C. for 15 minutes to carry out transesterification reaction. Further, the temperature of the mixture was raised to 215° C. for 10 minutes, and the pressure was adjusted to 24 kPa (180 torr). At 215° C., the pressure was maintained to 24 kPa (180 torr) for 10 minutes, subsequently, the temperature of the mixture was raised to 235° C. for 10 minutes, and the pressure was adjusted to 20 kPa (150 torr). Moreover, the temperatur...

example 2

[0241]In 300 cc of a four-necked flask equipped with a stirrer and a distillation apparatus were charged 45.5 g (0.20 mol) of BPA, 48.1 g (0.22 mol) of DPC, 0.05 g (0.000373 mol) of TMP and 0.5 μmol / mol (which means “0.5 μmol based on 1 mol of BPA”) of cesium carbonate as a catalyst, and the mixture was heated to 180° C. under nitrogen atmosphere and stirred for 5 minutes.

[0242]Thereafter, the pressure was adjusted to 27 kPa (200 torr) and simultaneously the temperature of the mixture was raised to 205° C. for 35 minutes. Thereafter, the mixture was maintained at 27 kPa (200 torr) and at 205° C. for 15 minutes to carry out transesterification reaction. Further, the temperature of the mixture was raised to 215° C. for 10 minutes, and the pressure was adjusted to 24 kPa (180 torr). At 215° C., the pressure was maintained to 24 kPa (180 torr) for 10 minutes, subsequently, the temperature of the mixture was raised to 235° C. for 10 minutes, and the pressure was adjusted to 20 kPa (150 t...

example 3

[0244]In 300 cc of a four-necked flask equipped with a stirrer and a distillation apparatus were charged 45.5 g (0.20 mol) of BPA, 48.0 g (0.22 mol) of DPC and 1.0 μmol / mol (which means “1.0 μmol based on 1 mol of BPA”) of sodium hydrogen carbonate as a catalyst, and the mixture was heated to 180° C. under nitrogen atmosphere and stirred for 5 minutes.

[0245]Thereafter, the pressure was adjusted to 27 kPa (200 torr) and simultaneously the temperature of the mixture was raised to 205° C. for 35 minutes. Thereafter, the mixture was maintained at 27 kPa (200 torr) and at 205° C. for 15 minutes to carry out transesterification reaction. Further, the temperature of the mixture was raised to 215° C. for 10 minutes, and the pressure reduction degree was adjusted to 24 kPa (180 torr). At 215° C., the pressure was maintained to 24 kPa (180 torr) for 10 minutes, subsequently, the temperature of the mixture was raised to 235° C. for 10 minutes, and the pressure was adjusted to 20 kPa (150 torr)...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
structural viscosity indexaaaaaaaaaa
temperatureaaaaaaaaaa
pressureaaaaaaaaaa
Login to View More

Abstract

The present invention provides a method for producing a branched aromatic polycarbonate resin that is molecular weight-increased, which comprises subjecting an aromatic polycarbonate prepolymer and a linking agent comprising a trifunctional or more of an aliphatic polyol compound to transesterification reaction in the presence of a transesterification catalyst under a reduced pressure condition.

Description

TECHNICAL FIELD[0001]The present invention relates to a method for producing a branched aromatic polycarbonate resin. More specifically, the present invention relates to a method for producing a branched aromatic polycarbonate resin with a high polymerization degree, in which a trifunctional or more of an aliphatic polyol compound has been used as a linking agent.BACKGROUND ART[0002]A polycarbonate (PC) is excellent in heat resistance, impact resistance and transparency, so that it has widely been used in many fields in recent years. With regard to the producing method of the polycarbonate, a lot of investigation has conventionally been performed. Among these, the producing methods of a polycarbonate derived from an aromatic dihydroxy compound, for example, 2,2-bis(4-hydroxyphenyl)propane (hereinafter referred to as “bisphenol A”), has been industrialized by either the interfacial polymerization method or the melt polymerization method.[0003]The polycarbonate produced by the interfa...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): C08G64/14
CPCC08G64/14C08G64/42C08L69/00
Inventor ISAHAYA, YOSHINORIHIRASHIMA, ATSUSHIHARADA, HIDEFUMIITO, MAKIHAYAKAWA, JUN-YAISOBE, TAKEHIKOTOKUTAKE, TAICHISHINKAI, YOUSUKE
Owner MITSUBISHI GAS CHEM CO INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products